CCIMI & Morgan Stanley Collaborative Project Presentation

Neural network approximation to the SABR option pricing model

Parley Ruogu Yang & Russell Barker

22 March 2021

- Simulation and computational costs
- Neural Network
- 4 Results
- 5 Evaluations and Extensions

Key reference: Horvath, Blanka, Aitor Muguruza, and Mehdi Tomas (2019). *Deep Learning Volatility*, arXiv:1901.09647v2

The set-up from Horvath et al (2019)

- Model $M(\theta)$ with parameter $\theta \in \Theta$
- Approximate calibration between a numerical approximation \ddot{P} of the pricing map, and price data observed from the market P^{MKT} :

$$\hat{\theta} = \underset{\theta \in \Theta}{\arg\min} \, \delta(\tilde{P}^{M(\theta)}(\zeta), P^{MKT}(\zeta)) \tag{1}$$

where $\boldsymbol{\zeta}$ denotes the choice of exotic product attribute.

- We learn $F^*(\theta) = \{\tilde{P}^{M(\theta)}(\zeta_j)\}_{j=1}^N$ via NN (step 1), then proceed into an inverse mapping study $P^{MKT} \mapsto \hat{\theta}$ (step 2).
- Here we investigate on the step 1.

SABR model

The Fundamental Pricing Theorem (FPT) with a constant interest rate r is specified as

$$\mathbb{E}\left[\max\{P^{\mathsf{asset}}(T;\theta) - K, 0\}e^{-rT}\right] = P^{\mathsf{call}}(K; P^{\mathsf{asset}}) =: F(K;\theta) \quad (2)$$

In the SABR model, $\theta \in \mathbb{R}^5$, specified as $\theta = (P^{asset}(0), \alpha(0), \beta, \rho, v)$

$$dP^{asset} = \alpha P^{asset\beta} dW_1 \tag{3a}$$

$$d\alpha = v\alpha dW_2 \tag{3b}$$

$$dW_1dW_2 = \rho dt \tag{3c}$$

Without further ambiguity, we denote P as the asset price P^{asset} .

SABR model — parameters

We fix certain probability distribution on \mathbb{R}^5 , in particular,

$$P(0) \sim U[0, 200]$$
 (4a)
 $\alpha(0) \sim U[0, 1]$ (4b)
 $\beta \sim U[0, 1]$ (4c)
 $\rho \sim U[-1, 1]$ (4d)
 $v \sim U[0, 1]$ (4e)

- \bullet In practice, we face a large dimension of Θ 1
- Consider $\theta = (\theta_0, \theta_1)$ where θ_1 is a fixed calibration. Then the ultimate aim becomes learning $P^{MKT} \mapsto (\hat{\theta}_0(\theta_1), \theta_1)$
- We note that θ_1 needs to be updated rather regularly the contemporary choice of the calibrated θ_1 depends on the historical market data and managerial decisions, which can change over the time.

Therefore, the learning needs to be done repetitively, as for every θ_1 , the training of neural network needs to proceed thoroughly.

- Deepen the understanding of the approximation behaviour towards SABR pricing model
- Computationally observe the trade-off amongst Monte Carlo sample size (M), Price paths per sample (N) and step size (s) given computing constraints.
- Further the observations on NN approximations² and potential failures.

Algorithm 1: Simulation and getting a sample of the distribution of $F(K;\theta)$, with Monte Carlo standard deviations

Input: Interest rate r, strike price K, terminal time T, incremental time s, number of paths per draw of θ , denoted N, number of draws of θ , denoted M, and the distribution of θ

Output: $\{P_{i,j}(T)\}_{j=1}^N$ thus $F_i(K;\theta_i)$ for each θ_i drawn, and get $\{F_i(K;\theta_i)\}_{i=1}^M$ with Monte Carlo standard deviation $\{\sigma_i^{MC}\}_{i=1}^M$

1. For $i \in \{1, ..., M\}$:

00000

- (a) Sample θ_i
- (b) Repeat below for N times to get $\{P_{i,j}(T)\}_{j=1}^{N}$:
 - i. Sample Brownian Motion $W_1(t), W_2(t)$:
 - A. Sample $\Delta W_2(t) \sim N(0,s)$
 - B. Sample $\Delta W_1(t)$
 - ii. Compute $\alpha(t)$, P(t):
 - A. Compute $\alpha(t)$
 - B. Compute $\Delta P(t) = \alpha(t)P(t)^{\beta}\Delta W_1(t)$
- (c) Obtain $F_i(K;\theta_i), \sigma_i^{MC}$
 - i. Compute $P_{i,j}^{call}(K; P_{i,j}) := \max\{P_{i,j}(T; \theta_i) K, 0\}e^{-rT}$ for all j
 - ii. Obtain $F_i(K;\theta_i)$ as the mean of $\{P_{i,j}^{call}(K;P_{i,j})\}_{i=1}^N$
 - iii. Obtain σ_i^{MC} as the standard deviation of $\{P_{i,j}^{call}(K; P_{i,j})\}_{i=1}^N$
 - iv. Reject the sample and re-run (i.e. return to 1(a) and keeping the same index i) if $F_i(K; \theta_i) > 400$
- 2. Therefore obtain $\{F_i(K;\theta_i), \sigma_i^{MC}\}_{i=1}^M$

Remarks and computational costs

- $F_i(K; \theta_i)$ is an approximation to the true $F(K; \theta_i)$
- With some pre-determined $\{K_j\}_{j=1}^J$, usually as a function of F(0), we simulate a dataset $\{(F(K_j;\theta_i))_{j=1}^J,\theta_i\}_{i=1}^M$. The cost of creating this dataset is $O(NM(J+s^{-1}))$.
 - The draw of normal distributions cost O(NMs⁻¹). This comes from the sampling of Brownian motions.
 - The computation with J strike prices needs O(NMJ). This comes from standard statistical operations for mean and variance.

Specifications in this experiment

Here we simply fix J and the specification of K_j : we let $K_1, ..., K_8$ to be 0.7F(0), ..., 1.4F(0), respectively.

Choices of combinations for training and validation set:

N	М	J	s^{-1}	Name
50	12K	8	100	V1
500	12K	8	20	V2
50	100K	8	10	L1
25	100K	8	20	L2
50	50K	8	20	L3
100	25K	8	20	L4

Configuration for the fixed test set, which will be used for final evaluation:

Ν	М	J	s^{-1}	Name
500	10K	8	100	TestData

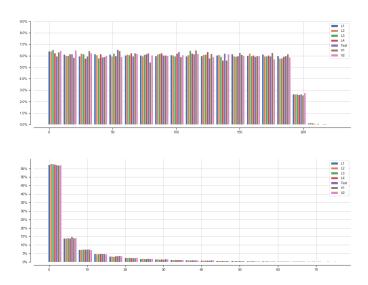


Figure: Histogram of $F_i(K; \theta_i)$ (top) and σ_i^{MC} (bottom)

Big picture:

$$\phi:\Theta o\mathbb{R}^J$$
 s.t. $\phi(\cdot)pprox F(K;\cdot)$

In practice:

fix a test dataset $D^{ t test}$ and with a evaluation formula $I(D,\phi)$,

$$\min I(D^{ test}, \phi)$$

Questions:

- How to determine the architecture?
- Given an architecture, how to train the neural network?

Architecture

Recall that a component-wise Exponential Linear Units (ELU) stands for

$$ELU(x) = 1[x > 0]x + 1[x < 0](e^x - 1)$$

and that a component-wise Rectified ELU (RELU) stands for

$$RELU(x) = \max\{0, x\}$$

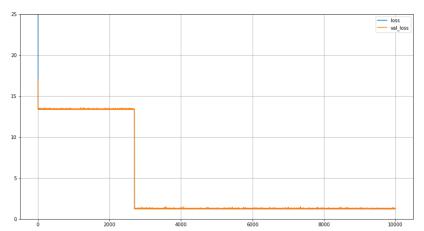
We consider

$$\phi = \sigma_3 \circ W_3 \circ \sigma_2 \circ W_2 \circ \sigma_1 \circ W_1$$

where $\sigma_1 = \sigma_2 = ELU$ and $\sigma_3 \in \{ELU, RELU\}$ and affine maps $W_I : \mathbb{R}^{n_{I-1}} \to \mathbb{R}^{n_I}$. We thus have neuron vector $n = (n_0, n_1, n_2, n_3)$ with $n_0 = \dim(\Theta)$ and $n_3 = J$

Training & Empirical troubles

Training: ADAM with MAE loss. Weight initialisation: the trouble.



Validation — Evaluation function

Consider a function that outputs the percentage of predictions errors that are larger than $k\sigma^{MC}$, where $k\in\{1,2,3\}$. This can be mathematically written as:

$$\ell_k^{MC}(\sigma, D, \phi) = 100(|D|J)^{-1} \sum_{(x, y, \sigma^{MC}) \in D} \sum_{j=1}^{J} \mathbb{1}[|y_j - (\phi(x))_j| > k\sigma] \quad (5)$$

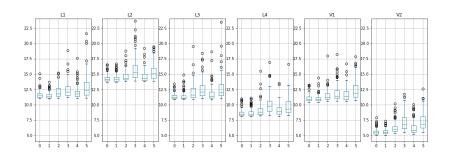
The choice of σ varies — here we consider the σ_L, σ_S , noting the maximum and minimum, respectively, of the generated σ^{MC}

- For each ϕ_7 , for each randomisation $i \in \{1, 2, ..., 99, 100\}$, we obtain $I(D; z, i) = \ell_2^{MC}(\sigma_I, D, \phi_z)$.
- 2 Summarise them by obtaining $I^{median}(D; z)$ as the median of $\{I(D; z, i)\}_{i=1}^{100}$.
- Select the top-performing model of each dataset, that is, $z^*(D) = \arg\min_{z \in \mathcal{I}} \{I^{median}(D; z)\}$

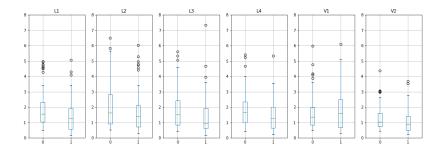
Practical set-ups of the architecture

Label	n	Total number of parameters	σ_3
0	(5,6,7,8)	149	ELU
1	(5,6,7,8)	149	RELU
2	(5,10,40,8)	828	ELU
3	(5,10,40,8)	828	RELU
4	(5,40,40,8)	2208	ELU
5	(5,40,40,8)	2208	RELU

Validation results



Test results



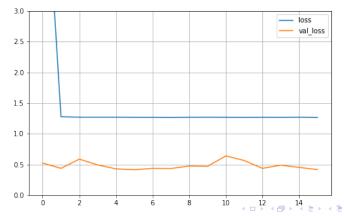
From above, we see more stable output in V2 compared to V1 — this implies that, from the simulation, an increased path size (N) at a cost of increased step size (s) could be beneficial. The rests have no contribution to a determined conclusion.

Interesting observations

MC-NN Error decomposition:

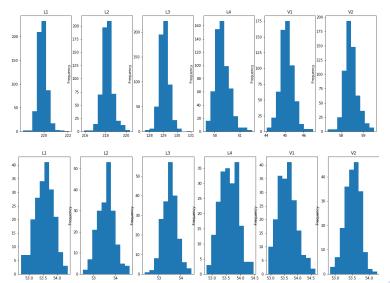
$$F_i(K;\theta_i) - \phi(K;\theta_i) = (F_i(K;\theta_i) - F(K;\theta_i)) + (F(K;\theta_i) - \phi(K;\theta_i))$$

It seems that the MC-Truth error occupies heavily in some dataset, as during the testing stage, the within-data loss could be higher than the test-data loss.



Interesting observations & Future extensions

Irreducible error on the max error — similar to Dr Hansen's arguments.



Future extensions

- One may try approximating the true option prices via polynomial expansions.
- Surprised about how fragile and delicate the training of NN can be. Potential extension is to back check on earlystop and potentially other training methods
- The simulated dataset can be fructified and diversified with put options and grid sample of θ
- It is a headache doing experiments with Colab / local machines as the computing power was so limited.