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This is a shorter version of my previous talk.
See full version at my website:
https://parleyyang.github.io/Cam/index.html

An advertisement about my research group:
Optimal Portfolio Research Group (Cambridge, Oxford, UCD)
https://optimalportfolio.github.io/
We ARE looking for industrial collaborations!
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Key reference: Horvath, Blanka, Aitor Muguruza, and Mehdi Tomas
(2019). Deep Learning Volatility, arXiv:1901.09647v2
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The set-up from Horvath et al (2019)

Whiteboard
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SABR model

Whiteboard
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SABR model — parameters

We fix certain probability distribution on R5, in particular,

P(0) ∼ U[0, 200] (1a)
α(0) ∼ U[0, 1] (1b)
β ∼ U[0, 1] (1c)
ρ ∼ U[−1, 1] (1d)
v ∼ U[0, 1] (1e)
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Motivation for computational analysis

Whiteboard
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Contribution

Deepen the understanding of the approximation behaviour towards
SABR pricing model
Computationally observe the trade-off amongst Monte Carlo sample
size (M), Price paths per sample (N) and step size (s) given
computing constraints.
Further the observations on NN approximations1 and potential
failures.

1 Harry and Valeria would have more to talk about on this part.



Introduction Simulation and computational costs Neural Network Results Evaluations and Extensions

Algorithm
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Remarks and computational costs

Skipped
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Specifications in this experiment

Here we simply fix J and the specification of Kj : we let K1, ...,K8 to be
0.7F (0), ..., 1.4F (0), respectively.

Choices of combinations for training and validation set:
N M J s−1 Name
50 12K 8 100 V1
500 12K 8 20 V2
50 100K 8 10 L1
25 100K 8 20 L2
50 50K 8 20 L3
100 25K 8 20 L4

Configuration for the fixed test set, which will be used for final evaluation:
N M J s−1 Name
500 10K 8 100 TestData
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Figure: Histogram of Fi (K ; θi ) (top) and σMC
i (bottom)
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Aim

Whiteboard
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Architecture

Recall that a component-wise Exponential Linear Units (ELU) stands for

ELU(x) = 1[x > 0]x + 1[x < 0](ex − 1)

and that a component-wise Rectified ELU (RELU) stands for

RELU(x) = max{0, x}

We consider
φ = σ3 ◦W3 ◦ σ2 ◦W2 ◦ σ1 ◦W1

where σ1 = σ2 = ELU and σ3 ∈ {ELU,RELU} and affine maps
Wl : Rnl−1 → Rnl . We thus have neuron vector n = (n0, n1, n2, n3) with
n0 = dim(Θ) and n3 = J
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Training & Empirical troubles

Training: ADAM with MAE loss. Weight initialisation: the trouble.
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Validation — Evaluation function

Consider a function that outputs the percentage of predictions errors that
are larger than kσMC , where k ∈ {1, 2, 3}. This can be mathematically
written as:

`MC
k (σ,D, φ) = 100(|D|J)−1

∑
(x,y ,σMC )∈D

J∑
j=1

1[|yj − (φ(x))j | > kσ] (2)

The choice of σ varies — here we consider the σL, σS , noting the
maximum and minimum, respectively, of the generated σMC
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Validation — Evaluation procedure

1 For each φz , for each randomisation i ∈ {1, 2, ..., 99, 100},2 we
obtain l(D; z , i) = `MC

2 (σL,D, φz).
2 Summarise them by obtaining lmedian(D; z) as the median of
{l(D; z , i)}100

i=1.
3 Select the top-performing model of each dataset, that is,

z∗(D) = arg minz∈Z{lmedian(D; z)}

2 This can be completed by the setseed in python.
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Practical set-ups of the architecture

Label n Total number of parameters σ3

0 (5,6,7,8) 149 ELU
1 (5,6,7,8) 149 RELU
2 (5,10,40,8) 828 ELU
3 (5,10,40,8) 828 RELU
4 (5,40,40,8) 2208 ELU
5 (5,40,40,8) 2208 RELU
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Validation results
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Test results

From above, we see more stable output in V2 compared to V1 — this
implies that, from the simulation, an increased path size (N) at a cost of
increased step size (s) could be beneficial. The rests have no
contribution to a determined conclusion.
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Interesting observations

MC-NN Error decomposition:

Fi (K ; θi )− φ(K ; θi ) = (Fi (K ; θi )− F (K ; θi )) + (F (K ; θi )− φ(K ; θi ))

It seems that the MC-Truth error occupies heavily in some dataset, as
during the testing stage, the within-data loss could be higher than the
test-data loss.
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Interesting observations & Future extensions

Irreducible error on the max error — similar to Dr Hansen’s arguments.
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Future extensions

1 One may try approximating the true option prices via polynomial
expansions.

2 Surprised about how fragile and delicate the training of NN can be.
Potential extension is to back check on earlystop and potentially
other training methods

3 The simulated dataset can be fructified and diversified with put
options and grid sample of θ

4 It is a headache doing experiments with Colab / local machines as
the computing power was so limited.
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