CCIMI & Morgan Stanley Collaborative Project Presentation (shorter version)

Neural network approximation to the SABR option pricing model

Parley Ruogu Yang & Russell Barker

31 March 2021

<ロト <四ト <注入 <注下 <注下 <

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	00000	000	000

This is a shorter version of my previous talk. See full version at my website:

https://parleyyang.github.io/Cam/index.html

An advertisement about my research group: Optimal Portfolio Research Group (Cambridge, Oxford, UCD) https://optimalportfolio.github.io/ We ARE looking for industrial collaborations!

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	00000	000	000

2 Simulation and computational costs

3 Neural Network

5 Evaluations and Extensions

Key reference: Horvath, Blanka, Aitor Muguruza, and Mehdi Tomas (2019). *Deep Learning Volatility*, arXiv:1901.09647v2

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	00000	000	000
The set-	up from Horvath et	al (2019)		

Whiteboard

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions	
00000	00000	00000	000	000	
SABR m	odel				

Whiteboard

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
0000	00000	00000	000	000
SABR m	odel — parameters			

We fix certain probability distribution on $\mathbb{R}^5,$ in particular,

$$P(0) \sim U[0, 200]$$
 (1a)

$$\alpha(0) \sim U[0,1] \tag{1b}$$

$$\beta \sim U[0,1]$$
 (1c)

$$ho \sim U[-1,1]$$
 (1d)

$$v \sim U[0,1]$$
 (1e

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Simulation and computational costs	Neural Network	 Evaluations and Extensions
Motivatio	on for computational	analysis	

Whiteboard

Introduction	Simulation and computational costs	Neural Network	Results 000	Evaluations and Extensions
Contribut	tion			

- Deepen the understanding of the approximation behaviour towards SABR pricing model
- Computationally observe the trade-off amongst Monte Carlo sample size (*M*), Price paths per sample (*N*) and step size (*s*) given computing constraints.
- Further the observations on NN approximations¹ and potential failures.

Introductio	n Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	●0000	00000	000	000
Algor	ithm			

Algorithm 1: Simulation and getting a sample of the distribution of $F(K; \theta)$, with Monte Carlo standard deviations

Input: Interest rate r, strike price K, terminal time T, incremental time s, number of paths per draw of θ , denoted N, number of draws of θ , denoted M, and the distribution of θ

Output: $\{P_{i,j}(T)\}_{j=1}^{N}$ thus $F_i(K; \theta_i)$ for each θ_i drawn, and get $\{F_i(K; \theta_i)\}_{i=1}^{M}$ with Monte Carlo standard deviation $\{\sigma_i^{MC}\}_{i=1}^{M}$

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	0000	00000	000	000
	$\mathbf{D} = (1 - 10)$			

- 1. For $i \in \{1, ..., M\}$:
 - (a) Sample θ_i
 - (b) Repeat below for N times to get $\{P_{i,j}(T)\}_{j=1}^N$:
 - i. Sample Brownian Motion $W_1(t), W_2(t)$:
 - A. Sample $\Delta W_2(t) \sim N(0,s)$
 - B. Sample $\Delta W_1(t)$
 - ii. Compute $\alpha(t), P(t)$:
 - A. Compute $\alpha(t)$
 - B. Compute $\Delta P(t) = \alpha(t)P(t)^{\beta}\Delta W_1(t)$
 - (c) Obtain $F_i(K; \theta_i), \sigma_i^{MC}$
 - i. Compute $P^{call}_{i,j}(K;P_{i,j}):=\max\{P_{i,j}(T;\theta_i)-K,0\}e^{-rT}$ for all j
 - ii. Obtain $F_i(K; \theta_i)$ as the mean of $\{P_{i,j}^{call}(K; P_{i,j})\}_{j=1}^N$
 - iii. Obtain σ_i^{MC} as the standard deviation of $\{P_{i,j}^{call}(K; P_{i,j})\}_{j=1}^N$
 - iv. Reject the sample and re-run (i.e. return to 1(a) and keeping the same index i) if $F_i(K; \theta_i) > 400$
- 2. Therefore obtain $\{F_i(K; \theta_i), \sigma_i^{MC}\}_{i=1}^M$

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	0000	00000	000	000
Remarks	and computational	costs		

Skipped

★□>
★□>
★□>
■

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	00000	000	000
Specifica	tions in this experim	nent		

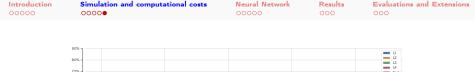
Here we simply fix J and the specification of K_j : we let $K_1, ..., K_8$ to be 0.7F(0), ..., 1.4F(0), respectively.

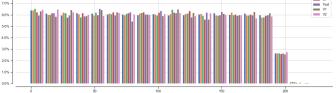
Choices of combinations for training and validation set:

Ν	М	J	s^{-1}	Name
50	12K	8	100	V1
500	12K	8	20	V2
50	100K	8	10	L1
25	100K	8	20	L2
50	50K	8	20	L3
100	25K	8	20	L4

Configuration for the fixed test set, which will be used for final evaluation:

	Ν	М	J	s^{-1}	Name
5	00	10K	8	100	TestData





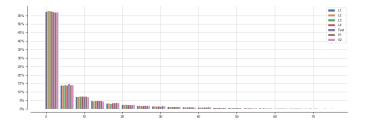


Figure: Histogram of $F_i(K; \theta_i)$ (top) and σ_i^{MC} (bottom)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction 00000	Simulation and computational costs	Neural Network	Results 000	Evaluations and Extensions
Aim				

<□ > < @ > < E > < E > E のQ @

Whiteboard

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	0000	000	000
Architect	ure			

Recall that a component-wise Exponential Linear Units (ELU) stands for

$$ELU(x) = \mathbb{1}[x > 0]x + \mathbb{1}[x < 0](e^{x} - 1)$$

and that a component-wise Rectified ELU (RELU) stands for

$$RELU(x) = \max\{0, x\}$$

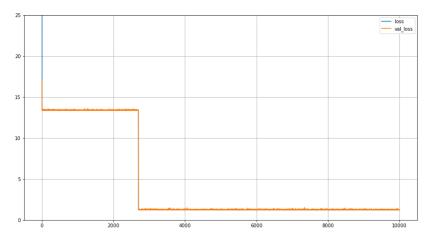
We consider

$$\phi = \sigma_3 \circ W_3 \circ \sigma_2 \circ W_2 \circ \sigma_1 \circ W_1$$

where $\sigma_1 = \sigma_2 = ELU$ and $\sigma_3 \in \{ELU, RELU\}$ and affine maps $W_I : \mathbb{R}^{n_I - 1} \to \mathbb{R}^{n_I}$. We thus have neuron vector $n = (n_0, n_1, n_2, n_3)$ with $n_0 = \dim(\Theta)$ and $n_3 = J$

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	00000	000	000
Training	& Empirical trouble	s		

Training: ADAM with MAE loss. Weight initialisation: the trouble.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

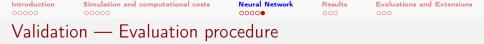
Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions		
00000	00000	00000	000	000		
Validation — Evaluation function						

Consider a function that outputs the percentage of predictions errors that are larger than $k\sigma^{MC}$, where $k \in \{1, 2, 3\}$. This can be mathematically written as:

$$\ell_k^{MC}(\sigma, D, \phi) = 100(|D|J)^{-1} \sum_{(x, y, \sigma^{MC}) \in D} \sum_{j=1}^J \mathbb{1}[|y_j - (\phi(x))_j| > k\sigma] \quad (2)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

The choice of σ varies — here we consider the σ_L, σ_S , noting the maximum and minimum, respectively, of the generated σ^{MC}



- For each ϕ_z , for each randomisation $i \in \{1, 2, ..., 99, 100\}$,² we obtain $I(D; z, i) = \ell_2^{MC}(\sigma_L, D, \phi_z)$.
- Summarise them by obtaining I^{median}(D; z) as the median of {I(D; z, i)}¹⁰⁰_{i=1}.
- Select the top-performing model of each dataset, that is, $z^*(D) = \arg \min_{z \in Z} \{ I^{median}(D; z) \}$

² This can be completed by the setseed in python. $(\Box) \rightarrow (\Box) \rightarrow$

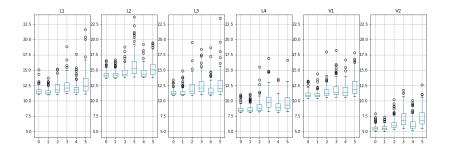
Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	00000	•00	000
Desident				

Practical set-ups of the architecture

Label	п	Total number of parameters	σ_3
0	(5,6,7,8)	149	ELU
1	(5,6,7,8)	149	RELU
2	(5,10,40,8)	828	ELU
3	(5,10,40,8)	828	RELU
4	(5,40,40,8)	2208	ELU
5	(5,40,40,8)	2208	RELU

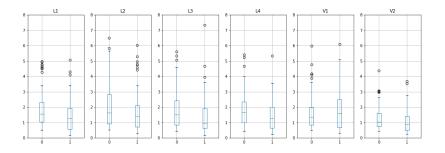
(ロ)、(型)、(E)、(E)、 E) のQ(()

Introduction 00000	Simulation and computational costs	Neural Network	Results 000	Evaluations and Extensions
Validatio	n results			



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	00000	000	000
Test resu	ılts			



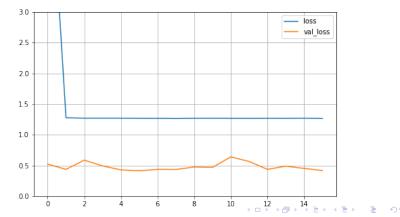
From above, we see more stable output in V2 compared to V1 — this implies that, from the simulation, an increased path size (N) at a cost of increased step size (s) could be beneficial. The rests have no contribution to a determined conclusion.

Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	00000	000	000
Interesti	ng observations			

MC-NN Error decomposition:

$$\mathcal{F}_i(\mathcal{K}; heta_i) - \phi(\mathcal{K}; heta_i) = (\mathcal{F}_i(\mathcal{K}; heta_i) - \mathcal{F}(\mathcal{K}; heta_i)) + (\mathcal{F}(\mathcal{K}; heta_i) - \phi(\mathcal{K}; heta_i))$$

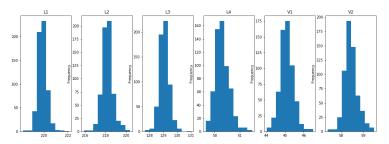
It seems that the MC-Truth error occupies heavily in some dataset, as during the testing stage, the within-data loss could be higher than the test-data loss.

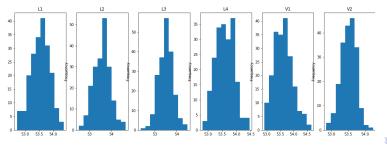


Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	00000	000	000

Interesting observations & Future extensions

Irreducible error on the max error — similar to Dr Hansen's arguments.





Introduction	Simulation and computational costs	Neural Network	Results	Evaluations and Extensions
00000	00000	00000	000	000
Future ex	tensions			

- One may try approximating the true option prices via polynomial expansions.
- Surprised about how fragile and delicate the training of NN can be. Potential extension is to back check on earlystop and potentially other training methods
- (a) The simulated dataset can be fructified and diversified with put options and grid sample of θ
- It is a headache doing experiments with Colab / local machines as the computing power was so limited.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○