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Figure 14: Extended intermediate samples from annealed Langevin dynamics for CelebA.

Figure: Song and Ermon (2020). See arXiv:1907.05600
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Figure 15: Extended intermediate samples from annealed Langevin dynamics for CelebA.

Figure: Song and Ermon (2020). See arXiv:1907.05600
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A mathematical introduction

Consider xi, ..., x, drawn from po(]Rd) where d >> n and pg unknown.
Ultimate aim: know more about pg and be able to draw from a similar
distribution.

Forward SDE Pricr Raverse SDE

.— dr = fiz,f] id.l-rulfu]nr—b@— ds = [f(z.8) - ¢ (8)9, bo (2] dt + g{t)da

polx) mix) = pr(a) iz = palz]

Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
{Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score V, log p, (x) (Section 3.3).

Figure: Song et al. (2021).
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Whiteboard: further introduction

A factory-like concept: (D, Methods) — po
Guarantee from the theory: if D drawn from pg, with Anderson (1982)
and LLN, po — po as |D| = >
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Whiteboard: Practical implementation (Forward)

Forward SDE:

Po(x1(0), ..., x2(0)) = Br(x1(T), ... xa(T))

Design the method such that p(x(T)|x(0)) ~ N(0,/), e.g. Song et al.
(2021, p.16)
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Whiteboard: Practical implementation (Backward)

Then for a desired number of samples m, draw iid samples
yi(T)y ooty ym(T) ~ N(0O, 1)
and get iid y1(0), ..., ym(0) ~ fo

Utilise the design to facilitate backward SDE such that

PT(y1(T), -, ym(T)) = Po(y1(0), ..., ym(0))
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Key takeaways

@ Reverse SDE (Anderson 1982)
@ More about p(x(t)|x(0)) (Sarkka and Solin 2019)
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Whiteboard: Definition of reverse SDE

@ 'Reverse white-noise’

@ Meaning of reverse-time Ito equation
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Anderson Theorem in the context of scalar g : [0, T] — R

Consider forward lto
dx = f(x, t)dt + g(x, t)dw

Theorem. Let x, be the process described by (3.3), and suppose f(-,-) and g(-,*)
are such as to guarantee the existence of the probabtllty denstty plxst) for to <t=<T
as a smooth and unique solution of its i pp
further that an r-vector process W, is defined by W, = 0 and

1
dwi =dw; + P> ] 2 [p(xy 08" (o 0141, (3.10)

and that the forward Xolmog i iated with the joint process (x,, Ww,)
yields a smooth and unique solution in t> 1o for p(x, #,t) and in t>s=1ty for
P(Xy Wy t| Wy 5). Then
(i) x.and w,— W, are independent for all t = s = t,.
(ii) With 54, the minimal o-algebra with respect to which x, for s=1 and w, for
s =1 are measurable, conditions (3.4) and (3.5) hold.
(iii) A reverse time model for x, is defined by

= f(x, 1) dt+g(x,, 1) d¥p, 3.11)

where

FO0)=F(xy 1)~ L3 ,[p(x“ g™ (x, 0g™ (x, 1)]. (2.12)

p(x 0

Figure: Anderson (1982)
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Key desire

We want
dx = [f(x, t) — g(t)?Vx log(p:(x))]dt + g(t)dw

All we need now is

o V, log(p:(x))
o Alternative: V, log(p(x(t)|x(0)))
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Whiteboard: more about p(x(t)|x(0))
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Training Objective

Goal: Estimate V,(;) log p:(x(t)) using a neural network sp(x(t), t)

Train a score-based model sy(x(t), t) by minimising:

* : 2
0" = argmin Et{/\(t)Ex(o)Ex(t)x(o) [[[s0(x(2), £) = Vo log poc(x(£) x(0))] 3 }
where A : [0, T] = Rsg

With sufficient data and model capacity: sp-(x(t),t) — V() log pe(x(t))
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How to choose A(t)?

In this paper: empirical choice A(t) < 1/E[||Vx log pOt(x(t)|X(O))||§]
In the follow-up paper: A(t) = g(t)?

Theorem 1. Consider two continuous distributions p and q over RP. Let {x(®) }teo,17
be a stochastic process defined by the SDE in Eq. (1). We use p; and g; to denote the
distributions of x(t) when x(0) ~ p and x(0) ~ ¢ respectively. Assuming logp:(x) and
log g:(x) are smooth functions which have at most polynomial growth at infinity, we have

1 T
Dxr(p | 9) = §JO Epu () [9(0)? [[Vx log p1 (%) — Vi log g: () 13] dt. ®)
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Model a simple 2D synthetic distribution: equal mixture of 4 Gaussians
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VE SDE:
dx = o(t)dw

where 0(t) = min(22)t, [2log (222), t € (e, 1]

Omin = 0.01 & 0Omax =35

Perturbation kernel :

poe(K(1)[x(0)) = N (x(1); x(0). 7% (2222) 1)

O min

“Prior” Distribution: p,1)(x(1)) ~ N (0,02,.1)

? max
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Future Work

Further exploration of the applications of score-based modeling in:
@ Inverse problems, e.g. p(y|x)

e Finance applications, e.g. p(R9) with large d and large high-order
momentums



	Introduction (PRY)
	SDE Theory and Probabilities (PRY)
	Applications (GB)

