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Outline of the presentation and Remarks

1 Motivation and Overview (PY)
2 Gradient Flow (G.F.) (HG)
3 Convergence theorem (PY)
4 Examples (HG & PY)
5 Conclusion (HG)
6 Q & A (HG & PY)

Remark: we inherit all numbering of results from the paper. Many
of the analytical results and precise assumptions, unless necessary,
are omitted due to the time constraint. One could further engage
with those by reading the particular parts of the paper.
Requests to clarify the notations are welcomed.
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Motivation from neural network

Figure: Neural Network. Courtesy: Wikipedia.
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Φ(θ) = σ(θ · x)

where θ, x ∈ Rd, and activation function σ : R→ R.
Then we have a parameterised set {Φ(θ)}θ∈Θ ⊂ F



Motivation and Overview Section 2: G.F. Section 3: Global minimiser Section 4: Examples Conclusion

Training example: Consider l : R× R→ R to be squared or logistic
loss, we may have the expected risk ∀f ∈ F ,

R(f) =

∫
l(f(x), y)dρ(x, y)
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Consider a minimisation problem over the set of non-negative finite
measures on a domain Ω ⊂ Rd, denoted M+(Ω).

F ∗ = min
µ∈M+(Ω)

F (µ)

where F is defined as

F (µ) = R

(∫
Φdµ

)
+

∫
V dµ

The first term is the usual smooth and convex loss function and the
second term is the convex regulariser.

Rigorous definition as per Normed Space
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Particle gradient flow

u ∈ Ωm of positions for m particles,

Fm(u) = R

m−1
∑
i∈[m]

Φ(ui)

+m−1
∑
i∈[m]

V (ui)

With the sub-differential of Fm(u) 1, we define the particle
gradient flow as an absolutely continuous path u : [0,+∞)→ Ωm

s.t.
u′(t) ∈ −m∂Fm(u(t)) ∀t ≥ 0 a.s.

We then construct

µm(t) := µm,t := m−1
∑
i∈[m]

δui(t)

where δ is a Dirac mass.
1∂f(u) := {p|f(u) ≥ f(u0) + p · (u− u0) +O(u− u0)}
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Overview

Section 2:
Proposition 2.3: what is u′i(t) and particularly how it relates to
Φ(u)
Theorem 2.6: what is the behaviour of µm as m→∞?

Section 3:
Theorem 3.3 / 3.5: is it the case that F (µm,t)→ F ∗ as
m, t→∞ ?

Section 4: example on Neural networks
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Assumptions

F is a separable Hilbert space, Ω ⊂ Rd is the closure of a
convex open set, and
(smooth loss) R : F → R+ is differentiable, with a differential
dR that is Lipschitz on bounded sets and bounded on sublevel
sets,
(basic regularity) Φ : Ω→ F is (Fréchet) differentiable,
V : Ω→ R+ is semiconvex, and
(locally Lipschitz derivatives with sublinear growth) there
exists a family (Qr)r>0 of nested nonempty closed convex
subsets of Ω such that:

(a) {u ∈ Ω; dist (u,Qr) ≤ r′} ⊂ Qr+r′ for all r, r′ > 0
(b) Φ and V are bounded and dΦ is Lipschitz on each Qr, and
(c) there exists C1, C2 > 0 such that
supu∈Qr

(‖dΦu‖+ ‖∂V (u)‖) ≤ C1 + C2r for all r > 0 where
‖∂V (u)‖ stands for the maximal norm of an element in ∂V (u)
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Existence and uniqueness of particle gradient flow

To each Fm and initial position vector u(0) there exists a unique
particle gradient flow. Further, one can describe the rate of
improvement of loss and the velocity of each particle under the
gradient flow.

For any initialisation u(0) there exists a unique particle gradient
flow u : R→ Ωm for Fm. Moreover, for almost every t ≥ 0 it holds
that:

• d
dsFm(u(s))

∣∣
s=t

= −|u′(t)|2

• u′i(t) = vt(ui(t))

Where for u ∈ Ω and µm,t := 1
m

∑n
i=1 δui(t),

vt(u) = ṽt(u)− proj∂V (u)(ṽt(u)), with

ṽt(u) = −
[〈
R′
(∫

Φdµm,t
)
, ∂jΦ(u)

〉]d
j=1

When V is differentiable, we have vt(u) = ṽt(u)−∇V
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Existence and uniqueness of particle gradient flow

As the sum of a continuously differentiable and a semiconvex
function, Fm is locally semiconvex and the existence of a unique
gradient flow on a maximal interval [0, T ] with the claimed
properties is standard. Now, a general property of gradient flows is
that for a.e t ∈ R+, u ∈ Ω, the derivative is (minus) the
subgradient of minimal norm. This leads to the explicit formula
involving the velocity field with pointwise minimal norm:

vt(u) = arg min
{
|v|2; ṽt(u)− v ∈ ∂V (u)

}
= ṽt(u)− arg min

{
|ṽt(u)− z|2 ; z ∈ ∂V (u)

}
=
(

id− proj∂V (u)

)
(ṽt(u)) .
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Wasserstein metric

The 2-Wasserstein distance between two probability measures
µ, ν ∈ P

(
Rd
)
is defined as

W2(µ, ν) :=

(
inf

∫
|y − x|2dγ(x, y)

)1/2

Where the infimum is taken over all γ having marginals µ and ν.
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Wasserstein gradient flow - motivation

Eventually we would like to take a "many particle limit" of a
particle gradient flow. This would mean generalising the particle
gradient flow to arbitrary measure-valued initialisations, not just
atomic ones. To do this we introduce the Wasserstein gradient
flow. What properties should it satisfy?

The evolution of a time-dependent measure (µt) under
instantaneous velocity fields (vt) satisfies the continuity
equation ∂tµt = −div(vtµt).
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Wasserstein gradient flow - motivation

The differential of F evaluated at µ ∈M(Ω) is represented by
the function F ′(µ) : Ω→ R defined as

F ′(µ)(u) :=

〈
R′
(∫

Φdµ

)
,Φ(u)

〉
+ V (u)

Thus vt (as defined before) is simply a field of (minus)
subgradients of F ′ (µm,t). We write this relation
vt ∈ −∂F ′ (µm,t) . The set ∂F ′ is called the Wasserstein
subdifferential of F , as it can be interpreted as the
subdifferential of F relative to the Wasserstein metric on
P2(Ω).
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Wasserstein gradient flow - definition

A Wasserstein gradient flow for the functional F on a time
interval [0, T ] is an absolutely continuous path (µt)t∈[0,T ] in P2(Ω)

that satisfies, distributionally on
[
0, T

]
×Ωd

∂tµt = −div (vtµt) where vt ∈ −∂F ′ (µt) .

F ′(µ)(u) :=
〈
R′
(∫

Φdµ
)
,Φ(u)

〉
+ V (u) can be interpreted as the

subdifferential of F relative to the Wasserstein metric on P2(Ω).
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Wasserstein gradient flow - Existence and uniqueness

If µ0 ∈ P2(Ω) is concentrated on a set Qr0 ⊂ Ω, then there exists a
unique Wasserstein gradient flow (µt)t≥0 for F starting from µ0.
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Wasserstein gradient flow as a limit

This is a proper generalization of the gradient flow for an atomic
measure since, whenever (u(t))t≥0 is a particle gradient flow for
Fm, then t 7→ µm,t := 1

m

∑m
i=1 δui(t) is a Wasserstein gradient flow

for F .

Many-particle limit

Consider (t 7→ um(t))m∈N a sequence of classical gradient flows for
Fm initialized in a set Qr0 ⊂ Ω. If µm,0 converges to some
µ0 ∈ P2(Ω) in the Wasserstein distance W2, then (µm,t)t
converges, as m→∞, to the unique Wasserstein gradient flow of
F starting from µ0.
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Aim

Let the domain be Ω = Rd, d ≥ 2 with smoothness,
sphere-separability of the support of G.F. and regularity of F
assumed.

Theorem 3.3

µt
W2−−−→
t→∞

µ∞ =⇒ F (µm,t)
|·|R−−−−−→

m,t→∞
F ∗
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A key Lemma

Point: to clarify what we want to achieve, i.e. the limit

lim
m,t→∞

F (µm,t) = F ∗ (1)

and to outline a step further.

Lemma C.15
Let (µt) be a G.F. which initialisation is on a set Qr0 ⊂ Ω, convex
and closed such that F (µt)→ F ∗. If (µ0,m)m is a sequence of
measures concentrated on a set Qr0 that converges to µ0 in W2,
then

lim
t→∞

lim
m→∞

F (µm,t) = F ∗ = lim
m→∞

lim
t→∞

F (µm,t)

Back to the initial definition
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Proof

Lemma A.1
F is continuous for W2

Fun fact by construction

t 7→ F (µm,t) is decreasing

1 First equation follows from A.1 directly.
2 Second equation can be proved by a two-way sandwich. To

demonstrate on the whiteboard.



Motivation and Overview Section 2: G.F. Section 3: Global minimiser Section 4: Examples Conclusion

White Board
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Definitions and constructions

Back to the first Lemma

Definition (Norm and Weak convergence)

We work with (M(Ω), || · ||BL) wherea

||µ||BL := sup
φ∈B∞(0,1)

∫
φdµ

µn ⇀ µ ∈M(Ω) if ∀φ : Rd → R who’s continuous and bounded,∫
φdµn →

∫
φdµ

aφ : Rd → R and some Lipschitz conditions are ignored here
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Way towards the remaining proof

Construct an operator h : M+(Ω)→M+(Sd−1) which,
∀φ : Sd−1 → R, 2∫

Sd−1

φ(θ)dh(µ)(θ) =

∫
Rd

|u|2φ(
u

|u|
)dµ(u)

Theorem C.16

If h(µt) ⇀ ν ∈ Sd−1, then ν is the global minimiser and

lim
t→∞

F (µt) = F ∗

This is the final step

2Convention is in place for φ( 0
0
) = 0
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Some key results to use

Lemma C.3

If h(µt) ⇀ ν ∈ Sd−1, then F ′(ν) vanishes ν − a.e.

Proposition 3.1

µ ∈M+(Ω) minimises F if and only if
F ′(µ) ≥ 0 and F ′(µ)(u) = 0 ∀u ∈ Ω µ− a.e.

Comment about what’s being left in the proof.
Now we prove by contradiction that F ′(ν) ≥ 0
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Proof by contradiction

Proposition C.1

µ ∈M+(Ω) s.t. F ′(µ) < 0. Then ∃ε > 0, A ⊂ Ω s.t.
IF G.F. (µt) satisfies h(µt1) ∈ BBL(h(µ), ε) with µt1(A) > 0
for some t1 ≥ 0

THEN ∃t2 > t1 s.t. h(µt2) /∈ BBL(h(µ), ε)

Obtain ε,A as above. Then by h(µt) ⇀ ν we can find T s.t.
h(µt) ∈ BBL(ν, ε)∀t ≥ T . But by above we have 3 t′ > T s.t.
h(µt′) /∈ BBL(ν, ε). Therefore contradiction.

3The requirement on the set A can be checked using C.10 and a complete
statement of C.1.
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Section 4.2: Neural Networks

Back to the first motivation

Sigmoid activation σ(s) = (1 + e−s)−1 and regularisation
V (w, θ) = |w|
Relu activation σ(s) = max{0, s}, and regularisation
V (w, θ) = |w| · |θ|

Further variations: Φ(θ) = σ(s(θ) · x) where s(θi) = θi|θi| ,
and V (θ) = |θ|2

Proposition 4.2 & 4.3
In any of the three settings, if the Wasserstien G.F. of F converges
in W2 to µ∞, then µ∞ is a global minimiser of F .

Animation: https://lchizat.github.io/PGF.html

https://lchizat.github.io/PGF.html
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Empirical particle complexity
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Summary

1 Introduce the particle gradient flow and study the
many-particle limit (a Wasserstein gradient flow).

2 Under suitable assumptions, if the Wasserstein gradient flow
converges then it converges to a global minimiser of F .

3 Apply the results to training a neural network with a single
hidden layer and ReLU activation function.

4 Numerical results show that the asymptotic behaviour of the
particle gradient flow can be seen at fairly small m.
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