

Background

- Time-varying distribution: $y_t \sim P_{Y|X}^t(\cdot|x_t;\theta)$ for all $t \in [T]$. We have access to data $\{(x_t, y_t) : t \in [T]\}$, but notice there can be many cases where $P_{Y|X}^t \neq P_{Y|X}^{t+1}$. This induces many estimation methods attempting to pick out change-points (engineering), time-varying parameters and moment estimators (time series and financial econometrics), and attempts in robust statistics. Modern ML architectures like RNN also aim to capture this.
- Associated problems:
 - Modelling & Forecast: which model and estimation method shall be used?
 - Evaluation: how to evaluate the performance of models under time-varying distribution?

Financial example: VIX, Yield Curve, and and S&P 500 during 2020

Adaptive Learning on Time Series: Method and Financial Applications

Parley Ruogu Yang^{#†*}, Ryan Lucas^{‡*}, Camilla Schelpe^{*}
[#] Correspondent parleyyang.github.io [†] CCIMI, Faculty of Mathematics, University of Cambridge
[‡] University College Dublin ^{*} Optimal Portfolio Research Group optimalportfolio.github.io
Presented at Isaac Newton Institute, Cambridge on the 24 November 2021

Empirical results: improved forecasts and financial portfolio with interpretation

k	Type	Configuration	1000 × MSE	\mathbf{CS}	\mathbf{SR}	$100\times{\rm ANR}$	MDD
3	AL Fixed	Ensemble-MC MG3T, AR(4), $w = 252$, VIX 3-8m	2.984 4.102	0.500 0.409	-0.958 -2.081	-51.591 -81.887	-0.220 -0.224
5	AL Fixed	Ensemble-MC MG3N, $w = 252$, VIX 3-6m	7.067 11.526	0.515 0.529	-1.415 -2.264	-70.035 -100.219	-0.214 -0.288

Figure: The February 2020 US Treasury yield curve inversion, coupled with a negatively sloping VIX futures term structure, preceded the pandemic-induced market crash of March 2020 (above). During the crisis, the VIX term structure exhibited extreme inversion, then accompanied by a drop in the overall level of Treasury yields (below).

Adaptive Learning: Algorithmic viewpoint [4]

Figure: 2020 Q1 testing performance with models selected based on data in 2019 [4].

Extensions: interpretability, statistical testing, and financial portfolio management

- Interpretability due to direct access to model formations (e.g. panels 4 and 5 in figure above)
- Associated testing for parameters and models (extension to policy formations [1]): frequentist [left and centre, 2] and Bayesian Factor testing [right, 3]

Financial decision based upon AL: profit and loss from trading can be reconciled against the holdings, which are influenced by the forecasts [4]

Examples of loss functions

► Basic forms used in [2, 3, 4]:

where v is a hyperparameter for window size

Basic forms with tricks used in [4]:

$$\ell^{\texttt{Norm, multi-valued}}(h, \Xi_{h,i}; \lambda, p) := \sum_{\tau=t-v+1}^t \lambda^{t-\tau} || \hat{\boldsymbol{y}}_{\tau|\tau-k} - y_\tau \boldsymbol{1}_k ||_p^p \| \boldsymbol{y}_{\tau|\tau-k} - y_\tau \boldsymbol{1}_k ||_p^p \| \boldsymbol{y}_{\tau|\tau-k} - y_\tau \boldsymbol{1}_k \|_p^p \| \boldsymbol{y}_{\tau} \|_p$$

where $\hat{y}_{\tau|\tau-k} = (\hat{y}_{\tau|\tau-1}, \hat{y}_{\tau|\tau-2}, ..., \hat{y}_{\tau|\tau-k})$

Interesting Penalisation used in [3]:

 $\ell^{\texttt{Penalised}}(h, \Xi_{h,i}; \lambda, p) := \ell^{\texttt{Global}}(h, \Xi_{h,i}; \lambda, p) + D(h, h_{t-1}^*)$

where \boldsymbol{D} measures distance, e.g. in terms of complexity and parametric dimensions

References

- Puglia, Michael (2019). Paper discussion on Yang (2019) 'Using The Yield Curve To Forecast Economic Growth'. Bank of England. https://www.bankofengland.co.uk/events/2019/november/ modelling-with-big-data-and-machine-learning
- Yang, Parley Ruogu (2020). Using The Yield Curve To Forecast Economic Growth. Journal of Forecasting. 2020; 39: 1057-1080. https://doi.org/10.1002/for.2676
- 3. Yang, Parley Ruogu (2021). Forecasting High-Frequency Financial Time Series: An Adaptive Learning Approach With the Order Book Data. https://arxiv.org/abs/2103.00264
- 4. Yang, Parley Ruogu. Ryan Lucas, and Camilla Schelpe (2021). Adaptive Learning on Time Series: Method and Financial Applications https://arxiv.org/abs/2110.11156