Adaptive Learning on Time Series: Method and Financial Applications

Parley Ruogu Yang¹, Ryan Lucas² and Camilla Schelpe³

24 November 2021 Isaac Newton Institute, Cambridge

¹ CCIMI, University of Cambridge and OPRG. Acknowledgement to Raena McElwee (UCD and OPRG) for visualisations and videos.

² University College Dublin and OPRG

³ OPRG

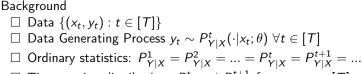
Background	Method	Empirical Results and Interpretability	Remarks
00	00	00	000

- 2 Method
- 3 Empirical Results and Interpretability

4 Remarks

References:

- Yang, Parley Ruogu (2020). Using The Yield Curve To Forecast Economic Growth. Journal of Forecasting. 2020; 39: 1057-1080. https://doi.org/10.1002/for.2676
- [2] Yang, Parley Ruogu (2021). Forecasting High-Frequency Financial Time Series: An Adaptive Learning Approach With the Order Book Data. https://arxiv.org/abs/2103.00264
- [3] Yang, Parley Ruogu, Ryan Lucas, and Camilla Schelpe (2021). Adaptive Learning on Time Series: Method and Financial Applications https://arxiv.org/abs/2110.11156


ickground	Method	Empirical Results and Interpretability
2	00	00

Remarks

Time-varying distribution

Ba

•0

 \Box Time-varying distribution: $P_{Y|X}^t
eq P_{Y|X}^{t+1}$ for many $t \in [T]$

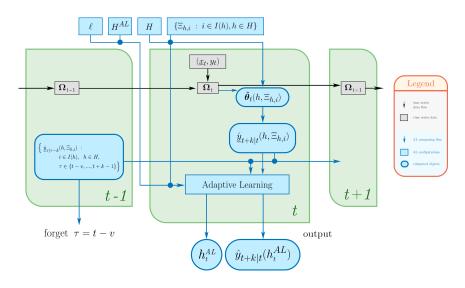
Figure: Simulated change point systems studied in [3]

Problems

 \Box Modelling & Forecast: which model and estimation shall be used?

□ Evaluation: how to evaluate the performance of models under time-varying distribution?

Background Method Empirical Results and Interpretability Remarks 0 00 00 00 000 000 000 000


Example: VIX, Yield Curve and S&P 500 during 2020

For full video, visit https://optimalportfolio.github.io/subpages/Videos.html

Background	Method	Empirical Results and Interpretability	Remarks
00	•0	00	000

Algorithmic introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

5/11

Background		Method	Empirical Results and Interpretability	Remarks	
00		0•	00	000	
	<i>c</i>				

Loss functions

 \Box Basic forms used in [1, 2, 3]:

$$\ell^{ ext{Norm, single-valued}}(h, \Xi_{h,i}; \lambda, p) := \sum_{ au=t-
u+1}^t \lambda^{t- au} |\hat{y}_{ au| au-k} - y_ au|^p$$

where v is a hyperparameter for window size \Box Basic forms with tricks used in [3]:

$$\ell^{\texttt{Norm, multi-valued}}(h, \Xi_{h, i}; \lambda, p) := \sum_{\tau = t - \nu + 1}^t \lambda^{t - \tau} || \hat{\boldsymbol{y}}_{\tau | \tau - k} - y_\tau \boldsymbol{1}_k ||_p^p$$

where $\hat{y}_{\tau|\tau-k} = (\hat{y}_{\tau|\tau-1}, \hat{y}_{\tau|\tau-2}, ..., \hat{y}_{\tau|\tau-k})$ \Box Interesting Penalisation used in [2]:

$$\ell^{\texttt{Penalised}}(h, \Xi_{h,i}; \lambda, p) := \ell^{\texttt{Global}}(h, \Xi_{h,i}; \lambda, p) + D(h, h_{t-1}^*)$$

where D measures distance, e.g. in terms of complexity and parametric dimensions Remark: looks like fused / adaptive Lasso.

Background	Method	Empirical Results and Interpretability
00	00	•0

Remarks

Improved forecasts through ensemble

k	Type	Configuration	$1000 \times MSE$	\mathbf{CS}	\mathbf{SR}	100 \times ANR	MDD
3	AL Fixed	Ensemble-MC MG3T, AR(4), $w = 252$, VIX 3-8m	2.984 4.102	0.500 0.409	-0.958 -2.081	-51.591 -81.887	-0.220 -0.224
5	AL Fixed	Ensemble-MC MG3N, $w = 252$, VIX 3-6m	7.067 11.526	0.515 0.529	-1.415 -2.264	-70.035 -100.219	-0.214 -0.288

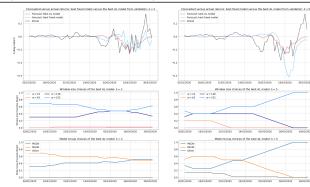
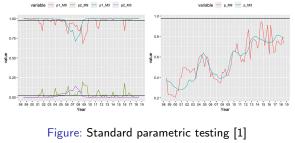



Figure: 2020 Q1 testing performance, models selected based on data in 2019 [3]

Background	Method	Empirical Results and Interpretability	Remarks
00	00	0	000
Construction of the set			

Statistical testing

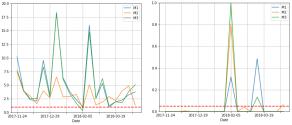
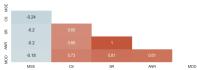
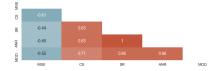



Figure: Model testing: Bayesian Factor (left) and Frequentist (right) [2] = 22



Evaluation in Financial Time Series: the failure of MSE

Background

Empirical: Adaptive Learning model groups over the full sample

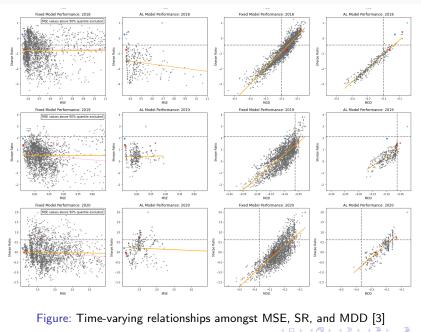
Empirical: fixed model groups during the calendar year 2020

Empirical: fixed model groups over the full sample

Empirical: Adaptive Learning model groups during the calendar year 2020

イロン イヨン イヨン イヨン

Figure: Correlation amongst statistical (MSE, CS) and financial (SR, ANR, and MDD) metrics [3]


3

Remarks

Background

Method

Empirical Results and Interpretability

10/11

Background	Method	Empirical Results and Interpretability	Remarks
00	00	00	000

Thank you for listening! See you at the Poster Session! For further information: https://parleyyang.github.io