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What this talk is not about

I am not going to discuss one particular paper in depth.
I am not going to discuss one sole empirical example in depth.
I am not going to introduce one particular methodology in
depth.
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What this talk is about

A number of research topics I have been working on.
A collection of literature that I engage in.
Some new methods and / or inference on time series:

Adaptive time series methods
Change-points
Big-data algorithms: PCR, SSA, and more

Some interesting applications:
Climate Statistics
Macroeconomic Analytics
Financial Time Series
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Remarks

I will be using whiteboard (on the iPad)
Questions and discussions are encouraged during the talk, try
not to leave it at the end.
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Statistical Learning Theory in a snapshot

Input space X and output space Y, often X = Rp and Y = R
Random Variables X ∈ X, Y ∈ Y
Decision function h : X → Y
Loss function l : Y× Y → R
Risks R(h) = E[l(h(X ),Y )]

Risk minimisation: given a (large) set H, find argminh∈H R(h)

Observation: squared loss =⇒ regression
Remark: empirical risks R̂(h) = N−1 ∑

i∈[N] l(h(Xi ),Yi )
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Statistical Learning Theory in time series

For non-time-series, (X ,Y ) ∼ PX ,Y = PY |X × PX

In time series, we have (Xt ,Yt) ∼ Pt
X ,Y = Pt

Y |X × Pt
X

Forecasting: we try to learn Yt+k |(Xt ,Yt), (Xt−1,Yt), ...

Remark: Bayesian? Maybe, the slides here are mostly
frequentists’ , but suggestions / discussions are welcome.



Initial Remarks Background Adaptive time series methods Change-points Big-data algorithms and the future

Motivation: variable selection over time

A financial example: https://optimalportfolio.github.io/subpages/Videos.html

Problems at time t:
Temporary selection of variables and models
Temporary selection of estimation method
Temporary selection of forecasting method (out-of-sample)

https://optimalportfolio.github.io/subpages/Videos.html
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Method by computing graph
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Method by algorithms as per Yang and Lucas (2022)
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Result: Macroeconomic Analytics (Yang, 2020)



Initial Remarks Background Adaptive time series methods Change-points Big-data algorithms and the future

Result: Learning with regularisation over time (Yang, 2021)
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Result: Financial Time Series — Portfolio Management
(Yang & Lucas, 2022)
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Result: Financial Time Series — Model Analytics (Yang &
Lucas, 2022)
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More on loss functions

Generalised notion of aggregated loss over time (Yang &
Lucas, 2022)

ℓ(h,Ξh,i ;λ, p) :=
t∑

τ=t−v+1

λt−τ ||ŷτ |τ−k − yτ1k ||pp (1)

Functional awards and penalties (Yang, 2021)

ℓtotal(h, ...,H \ {h}) = R̂(h, ...) + D(h, h∗t−1) (2)

Call for further analysis (asymtptoics, inference, etc) on these
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An example (Baranowski, Chen, & Fryzlewicz, 2019)

Specifications: for t ∈ {τj−1 + 1, ..., τj} and j ∈ [q + 1]
Piecewise constant variance, piecewise constant mean:

Xt = θj ,1 + θj ,2εt (3)

Constant variance σ0 fixed with continuous and piecewise
linear mean:

Xt = θj ,1 + θj ,2t + σ0εt (4)

where εt
iid∼ N(0, 1)∀t, θj := (θj ,1, θj ,2) satisfies θj ̸= θj−1 for all j ,

and that we aim to search for an unknown amount (q) of
change-points noted τ1, ..., τq with τ0 = 0, τq+1 = T .
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Example continued (Baranowski, Chen, & Fryzlewicz, 2019)

Example 1: London borough-level house price data (equation 3)

Example 2: Global surface temperature anomalies data (equation 4)
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Stationarity and feature transformation problems
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Principle Components Regression (PCR)

Let Z be a N × p matrix, then SVD transforms
Z =

∑N
i=1 siuiv

T
i = USV T where s1 ≥ s2 ≥ ... ≥ sN

Fix k ∈ [N], then annotate Vk := [v1, ..., vk ],

ZPCR,k := ZVk (5)

β̂PCR,k := argmin
β∈Rk

∑
i∈I

(Yi − ZPCR,k
i β)2 (6)

= (
k∑

i=1

s−1
i viu

T
i )Y (7)
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Properties of PCR

Equivalence with Hard Singular Value Thresholding (HSVT)

ZHSVT ,k :=
N∑
i=1

1[si ≥ sk ]siuiv
T
i

β̂HSVT ,k := argmin
β∈Rk

∑
i∈I

(Yi − ZHSVT ,k
i β)2

ZHSVT ,k β̂HSVT ,k = ZPCR,k β̂PCR,k

Key works: Agarwal et al. (2019) and Agarwal, Shah, and
Shen (2020) show bounds on ||β̂PCR,k − β|| and prediction and
forecasting errors.
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Singular Spectrum Analysis (Agarwal, Alomar, & Shah,
2022)

Special acknowledgement to Anish Agarwal for sharing this slide with me
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More on the future

Tree-based algorithms with robust statistics (if time allows)
Hilbert space machine learning
Idea (could be sketchy):
from

argmin
β∈Rp

R̂(β) + λ||β||

to Reproducible Kernel Hilbert Space optimisation

h∗ = argmin
h∈H

R̂(h) + Ω(h)

and generalised notions of loss design

argmin
R̂∈R

R(h∗(R̂))
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