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What this talk is not about

@ | am not going to discuss one particular paper in depth.
@ | am not going to discuss one sole empirical example in depth.

@ | am not going to introduce one particular methodology in
depth.
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What this talk is about

@ A number of research topics | have been working on.
@ A collection of literature that | engage in.

@ Some new methods and / or inference on time series:
e Adaptive time series methods
o Change-points
o Big-data algorithms: PCR, SSA, and more
@ Some interesting applications:
o Climate Statistics
e Macroeconomic Analytics
e Financial Time Series
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Remarks

@ | will be using whiteboard (on the iPad)

@ Questions and discussions are encouraged during the talk, try
not to leave it at the end.
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Statistical Learning Theory in a snapshot

Input space X and output space Y, often X =RP and Y = R
Random Variables X € X, Y €Y

Decision function h: X — Y

Loss function /: Y x Y — R

Risks R(h) = E[I(h(X), Y)]

Risk minimisation: given a (large) set H, find arg min,cy R(h)
Observation: squared loss = regression

Remark: empirical risks R(h) = N~ 3, ip; I(h(X3), Vi)
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Statistical Learning Theory in time series

For non-time-series, (X, Y) ~ Px,y = Py|x X Px

: : t _ pt t
In time series, we have (X;, Y;) ~ P} y = Pyix x Px

Forecasting: we try to learn Yy x|(Xt, Yi), (Xe=1, Y3), ...

Remark: Bayesian? Maybe, the slides here are mostly
frequentists’ , but suggestions / discussions are welcome.
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Motivation: variable selection over time

e A ﬁnancial examp|e: https://optimalportfolio.github.io/subpages/Videos.html
@ Problems at time t:

e Temporary selection of variables and models
e Temporary selection of estimation method
e Temporary selection of forecasting method (out-of-sample)


https://optimalportfolio.github.io/subpages/Videos.html
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Background  Adaptive time series methods
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Method by computing graph

Change-points
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Big-data algorithms and the future
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Method by algorithms as per Yang and Lucas (2022)

Algorithm 1: DMS
Input: Dala, desired fun::u.stlng index set T, and hyperparameters (¢, H, {-‘LJ}JEIIM hels0)
Output: Forecasts {4k U’t )}_,E-;r with the associated models {l‘rEI bier
(1) For ¢ € T, repeat:
(a} Evaluate £ given the information required. Then find h* € H and Ej ; which minimises the loss.
{b) Obtain and store Grak)s (hRPM5) 1= Grag) (A"

LB, yas the forecast

Algorithm 2: AE
Input: Data, desired forecasting index set T, and hyperparameters (¢, H, {Zp i} ierih hes. 00, v1)
Output: Forecasts {fp.4, (h*£)},cr with the associated models {h2E}, cr
(1) Enumerate U{(k, Epg) i i E I(h), h & H} to [M]. For t € T, repeat:
(a) Farr & {t —og + 1,... 1}, repeat:
(i} Evaluate ¢ given the information required. Then find h* € H and Z; ; which minimises the loss.
(ii) Allocate a weight Dfaa to the minimiser.
{b) Collect the weight &; and align the forecast vector yMk It

{c}) Obtain and store 11'1+Jc|1("':‘£) = {5, yH&Ir} as the forecast




Initial Remarks  Background  Adaptive time series methods  Change-points
000 [o]e] 00080000 000

Big-data algorithms and the future
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: Macroeconomic Analytics (Yang, 2020)
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Result: Learning with regularisation over time (Yang, 2021)
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Result: Financial Time Series — Portfolio Management
(Yang & Lucas, 2022)

Cumulative profit of Cross-Asset Strategies, DAA and Benchmark. SP500 (upper), NAS100 (lower)
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Result: Financial Time Series — Model Analytics (Yang &
Lucas, 2022)
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More on loss functions

o Generalised notion of aggregated loss over time (Yang &
Lucas, 2022)

t
(hZhiiAp) = D> AT~y Ldllf (1)
T=t—v+1
e Functional awards and penalties (Yang, 2021)

o2t (h, . H\ {h}) = R(h,..)+D(h, 1)  (2)

o Call for further analysis (asymtptoics, inference, etc) on these
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An example (Baranowski, Chen, & Fryzlewicz, 2019)

Specifications: for t € {7j_1 +1,...,7;} and j € [q + 1]

@ Piecewise constant variance, piecewise constant mean:
Xt =01+ 0j2er (3)

@ Constant variance o fixed with continuous and piecewise
linear mean:
Xe =101+ 0j2t + 0ges (4)

where ¢, < N(0,1)Vt, 0; := (0;1,0;2) satisfies §; # 6;_; for all j,
and that we aim to search for an unknown amount (g) of
change-points noted 71, ..., 74 with 70 =0, 7441 = T.



Initial Remarks  Background Adaptive time series methods Change-points  Big-data algorithms and the future
000 [o]e] 00000000 000

Example continued (Baranowski, Chen, & Fryzlewicz, 2019)

Example 1: London borough-level house price data (equation 3)
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Example 2: Global surface temperature anomalies data (equation 4)
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Stationarity and feature transformation problems
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Principle Components Regression (PCR)

@ Let Z be a N x p matrix, then SVD transforms
Z = Z,N:1 s,-u,-v,-T = USVT where s; > s > ... > sy
e Fix k € [N], then annotate Vi := [vi, ..., vk],

ZPRE .= 7V, (5)
BPCR,k ‘= arg min Z(Yl o ZiPCR’k,B)Z (6)
BERK igy

k
= (> s )Y (7)
i=1
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Properties of PCR

e Equivalence with Hard Singular Value Thresholding (HSVT)

N
ZHSVT’k = Z ]1[5,' > sk]s,-u,-v,-T
i=1

BERN ey
ZHSVT,kBHSVT,k _ ZPCR,kBPCR,k

o Key works: Agarwal et al. (2019) and Agarwal, Shah, and
Shen (2020) show bounds on ||3”“®* — 3|| and prediction and
forecasting errors.
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Singular Spectrum Analysis (Agarwal, Alomar, & Shah,

2022)

A generic solution: Singular Spectrum Analysis (SSA)
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Special acknowledgement to Anish Agarwal for sharing this slide with me
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More on the future

o Tree-based algorithms with robust statistics (if time allows)
e Hilbert space machine learning

o Idea (could be sketchy):
from

arg min R(5) + Al| ]|
BERP
to Reproducible Kernel Hilbert Space optimisation

h* = arg min R(h) + Q(h)
heH

and generalised notions of loss design

arg min R(h*(R))
ReR
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