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Introduction
I In a discrete time series, we consider ordered and irreversible processes: for

time t ∈ N, write the vector of potential explanatory variables xt ∈ X and
the vector of dependent variables yt ∈ Y, where dim(X)� dim(Y). At
time t, we have access to an information set representing all data available
up to t, written as: Φt := {(xτ , yτ) : τ ∈ [t]}. We are interested in
producing a conditional forecast of future values of the dependent variables
k periods ahead, written as:

yt+k|t := E[yt+k|Φt] = fk(Φt; θt;ht)

The right-hand-side acts as general notation for such a forecast — θt
represents the contemporary parameters and ht is the contemporary
functional form.

I 20th century problems: We design a finite model space based on
intuition. How to estimate θt(ht) and make forecasts? How to capture
time-varying parameters? Solution: MLE estimation; SARIMA models;
windowed time series; model selection via information criteria (AIC, BIC,
etc.). [1,3,5]

I 21st century problems: Is there a better way to determine ht ∈ H?
What if |H| =∞? What if ht 6= ht−1? How to efficiently capture the
correct model at every time? How to incorporate time series lags
determination with high dimensional feature selection? How to effectively
penalise the complexity under small data size? Do we even need to penalise
the complexity if far-order autocorrelation were to exist? [4,5,6,7,9,10]

Traditional algorithm (SARIMA + AIC) [3: pp.48-50]

1. Determine seasonality and stationarity from the content of the data
(e.g. simple intuition and ADF tests).

2. Find the maximum lags via ACF and PACF. Usually, total number of
explanatory variables are upper-bounded by

√
t to ensure efficiency and

to discourage over-fitting.

3. Pin down ARMA lags by finitely searching in an upper-bounded finite
model space.

Simulated example (similar to [7])

I Consider an SAR process (1− γL7)(1− ρL)yt = εt, with iid
εt ∼ N(0, 1)

I Without specific knowledge, a traditional algorithm is likely to select
AR(p), where p ≈ 8. Inefficient estimation and poorer forecasts.

I With appropriate training, we are able to make better forecasts by
finding a functional form that more closely approximates the underlying
process.

Figure: Our proposed model performs better than an AR(8) model chosen by the AIC

Figure: Forecasts from AR(8) and our proposed Model

Motivating example: Yield curve, SP500, and VIX curve [9, 11]

Figure: The February 2020 US Treasury yield curve inversion, coupled with a negatively sloping VIX
futures term structure, preceded the pandemic-induced market crash of March 2020 (above). During
the crisis, the VIX term structure exhibited extreme inversion, then accompanied by a drop in the overall
level of Treasury yields (below).
There is widespread existing literature on the predictive power of the VIX and interest rate term
structure [2,7,8,9], and we can observe from preliminary data analysis that a relationship likely exists
between the shape of the VIX futures term structure and the US Treasury yield curve, which offers the
potential to forecast significant macroeconomic regime changes. However, this relationship may not
remain static over time: parameters may change, and the functional form of this relationship may vary
over different windowed periods. This motivates the adoption of a novel learning technique to best
understand ht and associate high-dimensional modelling to time series.

Adaptive learning: theory [11]

An adaptive learning on a time series dataset is a learning method in which
there is a learning function `, a set of models H , and
estimation techniques Λh : Θ(h) 7→ θ(h) ∀h ∈ H such that for all
time t ∈ T validation ∪ T test, we are able to obtain the following:

I ∀h ∈ H , an estimated statistic θt(h)

I ∀h ∈ H , an estimated forecast yt+k|t(h)

I an optimal model h∗ ∈ H with an induced optimal forecast
yt+k|t(h

∗)

Adaptive learning: algorithm [10: p.18]

1. Produce H̃t ⊂ H subject to computational capacity and statistical
restrictions (e.g. flat or boundary MLE due to stationarity).

2. Obtain θt(ht) for all ht ∈ H̃t, and subsequently:
h∗t = arg minh∈H̃t

`(Φt, h,H \ {h})
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