Extra Mathematical Notes for Lectures and
 Classes*

Parley Ruogu Yang ${ }^{\dagger}$

This version: Friday $4^{\text {th }}$ March, 2022

Abstract

This document consists of notes for Lectures section 2) and Classes section 3).

Contents

1 General notes

1.1 Notations . 3
1.2 Activation functions . 3

2 Lectures 4
2.1 Lectures 3 and 4: Basic optimisation methods 4
2.1.1 Gradient Descent in general 4
2.1.2 Gradient Descent in the ERM framework 4
2.1.3 Stochastic Gradient Descent 4
2.1.4 Momentum . 5
2.2 Lecture 4: Adaptive Learning Rates 5
2.2.1 General notions . 5
2.2.2 Adagrad . 5
2.2.3 RMSProp . 5
2.2.4 Adam . 6
2.3 Lecture 4: Dropout . 6
2.4 Lecture 5: Convolutional Neural Networks 6

3 Classes 7
3.1 Class 1: Linear and logistic regressions 7
3.1.1 Linear regression and MSE loss 7
3.1.2 Gradient of linear regression with MSE loss 7
3.1.3 Logistic regression model and binary cross entropy 7
3.2 Class 2: Perceptron and the XOR Problem 8
3.2.1 Perceptron . 8
3.2.2 The XOR Problem statement 8
3.2.3 Theoretical result . 8

[^0]3.3 Class 3: Options Pricing 9
3.3.1 Background 9
3.3.2 Class 3 Notebook 1 9
3.3.3 Class 3 Notebook 2 9
3.3.4 Class 3 Homework 9

1 General notes

1.1 Notations

The default meaning of \mathbb{N} is the set of integers greater or equal to 1 . For $n \in \mathbb{N}$, denote $[n]:=\{1,2, \ldots, n-1, n\}=[1, n] \cap \mathbb{N}$. When $x \in \mathbb{R}^{n}$ is written, x_{i} stands for the i-th entry of x. If $\rho: \mathbb{R} \rightarrow \mathbb{R}$ is well-defined, then for $y \in \mathbb{R}^{n}$, $\rho(y):=\left(\rho\left(y_{1}\right), \ldots, \rho\left(y_{n}\right)\right)$, also known as element-wise operation.
$N\left(\mu, \sigma^{2}\right)$ refers to a normal distribution with mean μ and variance σ^{2}, while a standard normal distribution refers to the case when $\mu=0$ and $\sigma^{2}=1$.

Where ε or ε_{i} are written, the default meaning is that they are drawn from iid $N\left(0, \sigma^{2}\right)$ distribution with σ^{2} unknown.

NN stands for Neural Networks.
\odot stands for element-wise multiplication

1.2 Activation functions

Let $\rho^{\text {sigmoid }}: \mathbb{R} \rightarrow \mathbb{R}$ be the sigmoid function, it is defined by

$$
\begin{equation*}
x \mapsto(1+\exp (-x))^{-1} \tag{1.2.1}
\end{equation*}
$$

Let $\rho^{\mathrm{thr}}: \mathbb{R} \rightarrow \mathbb{R}$ be the threshold function, it is defined by

$$
x \mapsto \begin{cases}0 & \text { if } x<0 \tag{1.2.2}\\ 1 & \text { else }\end{cases}
$$

This function is also commonly written as $\mathbb{1}[x \geq 0]$
Let $\rho^{\text {relu }}: \mathbb{R} \rightarrow \mathbb{R}$ be the ReLU (Rectified Linear Unit) function, it is defined by

$$
\begin{equation*}
x \mapsto \max \{0, x\} \tag{1.2.3}
\end{equation*}
$$

Let $K \in \mathbb{N}, \rho^{\mathrm{sm}}: \mathbb{R}^{K} \rightarrow(0,1)^{K}$ be the softmax function, the i-th coordinate of the output $\rho(x)_{i}$ is defined by

$$
\begin{equation*}
x \mapsto \frac{e^{x_{i}}}{\sum_{j \in[K]} e^{x_{j}}} \tag{1.2.4}
\end{equation*}
$$

2 Lectures

2.1 Lectures 3 and 4: Basic optimisation methods

2.1.1 Gradient Descent in general

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function, a gradient descent sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ with learning rate scheduling $\left\{\eta_{n}\right\}_{n=0}^{\infty}$ and initialisation $x_{i n i}$ is defined as

$$
\begin{align*}
& x_{0}=x_{i n i} \tag{2.1.1}\\
& x_{n}=x_{n-1}-\eta_{n-1} \nabla f\left(x_{n-1}\right) \quad \forall n \in \mathbb{N} \tag{2.1.2}
\end{align*}
$$

2.1.2 Gradient Descent in the ERM framework

In the framework of Empirical Risk Minimisation (ERM), we are in the business of solving

$$
\begin{equation*}
\min _{f} \mathbb{E}_{(x, y) \sim p_{\text {data }}}[L(f(x, \theta), y)] \tag{2.1.3}
\end{equation*}
$$

where $f(x, \theta)$ is the predicted output when the input data is x. In parametric setting, we search over some parametric space $\theta \in \Theta$ (often $\Theta=\mathbb{R}^{n}$), but also note the minimisation over f applies in a more general setting, e.g. functional minimisation or hyper-parameter search. Write the (empirical) data as $D:=$ $\left\{\left(x_{i}, y_{i}\right): i \in[M]\right\}$ where M is the sample size, and the distribution of empirical data as $p_{\text {data }}$. We note that $J(\theta)$ can be written as $M^{-1} \sum_{i \in[M]} L\left(f\left(x_{i}, \theta\right), y_{i}\right)$.

Let $\theta \in \mathbb{R}^{n}$ and $J(\theta):=\mathbb{E}_{(x, y) \sim p_{\text {data }}}[L(f(x, \theta), y)]$, then a batch / deterministic gradient descent method with learning rate scheduling $\left\{\eta_{n}\right\}_{n=0}^{\infty}$ and initialisation $\theta_{\text {ini }}$ is defined as

$$
\begin{align*}
& \theta_{0}=\theta_{i n i} \tag{2.1.4}\\
& \theta_{n}=\theta_{n-1}-\eta_{n-1} \nabla_{\theta} J\left(\theta_{n-1}\right) \quad \forall n \in \mathbb{N} \tag{2.1.5}
\end{align*}
$$

2.1.3 Stochastic Gradient Descent

A Stochastic Gradient Descent (SGD) algorithm takes the average gradient on a minibatch of m examples drawn randomly from the data. Clearly, for m to make sense, we practically have $m \ll M$. On the other hand, when we have $m=M$, SGD is the same as GD.

A SGD algorithm with batch size m, learning rate scheduling $\left\{\eta_{n}\right\}_{n=0}^{\infty}$, and initialisation $\theta_{\text {ini }}$ is defined as

$$
\begin{align*}
\theta_{0} & =\theta_{i n i} \tag{2.1.6}\\
\theta_{n} & =\theta_{n-1}-\eta_{n-1} m^{-1} \nabla_{\theta} \sum_{j \in[m]} L\left(f\left(\tilde{x}_{j}, \theta_{n-1}\right), \tilde{y}_{j}\right) \quad \forall n \in \mathbb{N} \tag{2.1.7}
\end{align*}
$$

where, $\forall n \in \mathbb{N}$, a set of data $\left\{\left(\tilde{x_{j}}, \tilde{y_{j}}\right): j \in[m]\right\}$ is sampled from $p_{\text {data }}$ uniformly.
Larger m provides a more accurate estimate of the gradient, but more computational costs ${ }^{1}$ Training with small m may require a small learning rate may require a small learning rate to maintain stability due to high variance in the estimation of gradient.

[^1]
2.1.4 Momentum

Based on subsubsection 2.1.3, we rewrite Equation 2.1.7 into the following two lines:

$$
\begin{align*}
& v_{n}=\eta_{n-1} m^{-1} \nabla_{\theta} \sum_{j \in[m]} L\left(f\left(\tilde{x}_{j}, \theta_{n-1}\right), \tilde{y}_{j}\right) \tag{2.1.8}\\
& \theta_{n}=\theta_{n-1}-v_{n} \tag{2.1.9}
\end{align*}
$$

Now, a momentum method with initial velocity v_{0} and momentum parameter α varies the above into

$$
\begin{align*}
& v_{n}=\alpha v_{n-1}-\eta_{n-1} m^{-1} \nabla_{\theta} \sum_{j \in[m]} L\left(f\left(\tilde{x}_{j}, \theta_{n-1}\right), \tilde{y_{j}}\right) \tag{2.1.10}\\
& \theta_{n}=\theta_{n-1}+v_{n} \tag{2.1.11}
\end{align*}
$$

2.2 Lecture 4: Adaptive Learning Rates

2.2.1 General notions

General idea: adapt a separate learning rate (or momentum for Adam) for the update towards θ_{n}.

We reconsider the system as per Equation 2.1.8 and Equation 2.1.9 and introduce the following notation:

- Gradient $g_{n}:=m^{-1} \nabla_{\theta} \sum_{j \in[m]} L\left(f\left(\tilde{x_{j}}, \theta_{n-1}\right), \tilde{y_{j}}\right)$
- Gradient accumulation variable $\left\{r_{n}\right\}_{n=0}^{\infty}$ where $r_{0}=0$
- $\delta \in\left[10^{-7}, 10^{-6}\right]$ for numerical stabilisation
- Decay rates $\rho, \rho_{1}, \rho_{2} \in[0,1)$

Also note that square roots and divisions are element-wise throughout this subsection.

2.2.2 Adagrad

In Adagrad (Adaptive Gradient Algorithm), we moderate Equation 2.1.8 and Equation 2.1.9 into:

$$
\begin{align*}
& r_{n}=r_{n-1}+g_{n} \odot g_{n} \tag{2.2.1}\\
& \theta_{n}=\theta_{n-1}-\frac{\eta_{n-1}}{\delta+\sqrt{r_{n}}} \odot g_{n} \tag{2.2.2}
\end{align*}
$$

2.2.3 RMSProp

In RMSProp (Root Mean Square Propagation), we vary Equation 2.2.1 into

$$
\begin{equation*}
r_{n}=\rho r_{n-1}+(1-\rho) g_{n} \odot g_{n} \tag{2.2.3}
\end{equation*}
$$

2.2.4 Adam

In Adam (Adaptive Moment Estimation), we consider two moments: s_{n} and r_{n} respectively, with initialisation $s_{0}=r_{0}=0$. We moderate Equation 2.1.8 and Equation 2.1.9 into:

$$
\begin{align*}
& s_{n}=\left(1-\rho_{1}^{n}\right)^{-1}\left(\rho_{1} s_{n-1}+\left(1-\rho_{1}\right) g_{n}\right) \tag{2.2.4}\\
& r_{n}=\left(1-\rho_{2}^{n}\right)^{-1}\left(\rho_{2} r_{n-1}+\left(1-\rho_{2}\right) g_{n} \odot g_{n}\right) \tag{2.2.5}\\
& \theta_{n}=\theta_{n-1}-\frac{\eta_{n-1}}{\delta+\sqrt{r_{n}}} \odot s_{n} \tag{2.2.6}
\end{align*}
$$

2.3 Lecture 4: Dropout

Suppose the input to a layer is $x \in \mathbb{R}^{n}$. Recall the definition of a layer with activation ρ is:

$$
\begin{align*}
& z=w x+b \tag{2.3.1}\\
& y=\rho(z) \tag{2.3.2}
\end{align*}
$$

A Dropout layer with probability p for the same input and activation is described as, with $r:=\left(r_{1}, \ldots, r_{n}\right)$:

$$
\begin{align*}
& r_{j} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p) \quad \forall j \in[n] \tag{2.3.3}\\
& z=w(r \odot x)+b \tag{2.3.4}\\
& y=\rho(z) \tag{2.3.5}
\end{align*}
$$

2.4 Lectures 5 and 6: Convolutional Neural Networks (CNN)

Let K be a 4-D kernel tensor with element $K_{i, j, k, l}$ giving the connection strength between a unit in channel i of the output and a unit in channel j of the input, with k and l being the offset weights. Let V be the input with $V_{i, j, k}$ giving the value of the input unit with channel i at row j and column k. The output Z can be written as

$$
\begin{equation*}
Z_{i, j, k}=\sum_{l, m, n} V_{l, j+m, k+n} K_{i, l, m, n} \tag{2.4.1}
\end{equation*}
$$

For instance, in class 5, we look at:

- CIFAR-10 problem where images are given as 32×32 pixel coloured photographs, hence $j=k=32$ and $l=3$
- The MNIST problem where images are given as 28×28 pixel bilevel, hence $j=k=28$ and $l=1$.
Let $s:=\left(s_{1}, s_{2}\right)$ be the strides, then a downsampled convolution with s is defined as

$$
\begin{equation*}
Z_{i, j, k}(s)=\sum_{l, m, n} V_{l, j \times s_{1}+m, k \times s_{2}+n} K_{i, l, m, n} \tag{2.4.2}
\end{equation*}
$$

Maximum Pooling is a commonly used layer in CNN to reduce spatial dimensions of our hidden representations. The mathematical representation varies by coding implementations, see https://pytorch.org/docs/stable/generated/ torch.nn.MaxPool2d.html for example.

3 Classes

3.1 Class 1: Linear and logistic regressions

3.1.1 Linear regression and MSE loss

Let $x \in \mathbb{R}^{m}$ be the input variable. Let $y \in \mathbb{R}$ be the output variable.
We consider $y=f(x)+\varepsilon$ where $f(x)=x^{T} w+b$
If we have data $\left\{\left(x_{i}, y_{i}\right): i \in[n]\right\}$, the MSE loss takes the following form:

$$
\begin{equation*}
l(w, b)=n^{-1} \sum_{i \in[n]}\left(y_{i}-f\left(x_{i}\right)\right)^{2}=n^{-1} \sum_{i \in[n]}\left(y_{i}-x_{i}^{T} w-b\right)^{2} \tag{3.1.1}
\end{equation*}
$$

3.1.2 Gradient of linear regression with MSE loss

It will be useful later in subsection 2.1 to have the gradient ∇l in hand. In particular:

$$
\begin{align*}
& \nabla_{w} l(w, b)=n^{-1} \sum_{i \in[n]}\left(2 x_{i}\right)\left(f\left(x_{i}\right)-y_{i}\right) \tag{3.1.2}\\
& \nabla_{b} l(w, b)=n^{-1} \sum_{i \in[n]} 2\left(f\left(x_{i}\right)-y_{i}\right) \tag{3.1.3}
\end{align*}
$$

3.1.3 Logistic regression model and binary cross entropy

Let ρ be the sigmoid function, then we consider $y=f(x)+\varepsilon$ where $f(x)=$ $\rho\left(x^{T} w+b\right)$

In the event of binary classification problem, in which $y \in\{0,1\}$, we clearly do not have ε as a Normally distributed error. In this occasion, with data $\left\{\left(x_{i}, y_{i}\right): i \in[n]\right\}$, we consider the binary cross entropy as

$$
\begin{equation*}
l(f)=-n^{-1}\left(\sum_{i \in[n]} y_{i} \log \left(f\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-f\left(x_{i}\right)\right)\right) \tag{3.1.4}
\end{equation*}
$$

3.2 Class 2: Perceptron and the XOR Problem

3.2.1 Perceptron

With an activation function $\rho: \mathbb{R} \rightarrow \mathbb{R}$ and a feature engineering ϕ, we have a single-layer NN as $x \mapsto \rho\left(\phi(x)^{T} w+b\right)$

For the rest of the class (as well as in the lecture), we ignore ϕ, or equivalently replace it by an identity map. A feed-forward NN with depth L can be written as

$$
\begin{equation*}
y=h_{L} \circ h_{L-1} \circ \ldots \circ h_{1}(x) \tag{3.2.1}
\end{equation*}
$$

where $h_{l}(x)=a_{l}\left(W^{(l-1)} x+b^{(l-1)}\right)$ for all $l \leq L-1$ and $h_{L}(x)=W^{L-1} x+b^{L-1}$.

3.2.2 The XOR Problem statement

Consider $x \in \mathbb{R}^{2}$ and $y \in \mathbb{R}$, in particular, our data is as follows:

$$
\begin{equation*}
D=\{((-1,-1),-1),((-1,1), 1),((1,-1), 1),((1,1),-1)\} \tag{3.2.2}
\end{equation*}
$$

The objective is to separate the points, mathematically one uses

$$
\begin{equation*}
L(f)=\sum_{i \in[4]} \max \left(-y_{i} f\left(x_{i}\right), 0\right) \tag{3.2.3}
\end{equation*}
$$

3.2.3 Theoretical result

Theorem 1 (Failure of linear functions compared against two-layer NN). Let \mathcal{L} be the class of all non-zero linear functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$ and let
$\mathcal{N}(\rho)=\left\{f: \mathbb{R}^{2} \rightarrow \mathbb{R}: f(x)=\rho\left(w_{1} x+b_{1}\right)^{T} w_{2}+b_{2}, w_{1} \in \mathbb{R}^{2 \times 2}, w_{2}, b_{1} \in \mathbb{R}^{2}, b_{2} \in \mathbb{R}\right\}$
where ρ is the threshold function. Then

$$
\begin{equation*}
\min _{f \in \mathcal{L}} L(f)>0=\min _{f \in \mathcal{N}(\rho)} L(f) \tag{3.2.5}
\end{equation*}
$$

Proof. The left hand side can be proved by a 2-D diagram, or analytically via the diagram-induced geometry. The right hand side can be proved by showing an element $f \in \mathcal{N}(\rho)$ satisfies $L(f)=0$, which is equivalent to show $y_{i}=f\left(x_{i}\right) \forall i$. Consider

$$
\begin{aligned}
& b_{1}=(0,0), b_{2}=-1, w_{2}=(-2,2) \\
& w_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

which offers one specification that works.
Remarks:

1. $\mathcal{N}(\rho)$ can also be thought as the class of all two-layer NNs with architecture as $(2,2,1)$ and activation function as the threshold function.
2. Note that the loss function can be 0 if $f\left(x_{i}\right)=0 \forall i$. This is a bug of the loss function, hence when considering linear function, we restrict to the non-linear ones.

3.3 Class 3: Options Pricing

3.3.1 Background

A (European) call option at maturity T gives the owner the right to buy an underlying asset at strike price K. This price of such an option is denoted as $V\left(S_{t}, t ; K\right)$ at time $t \in[0, T]$, where S_{t} is the price of the underlying asset at time t. It is natural to relate this to various parameters in the market: in the Black-Scholes model, we relate this to the interest rate r and volatility σ. A PDE expression is provided as

$$
\begin{equation*}
\partial_{t} V+r S \partial_{S} V+\frac{1}{2} \sigma^{2} S^{2} \partial_{S}^{2} V=r V \tag{3.3.1}
\end{equation*}
$$

The solution of this is complicated and non-linear:

$$
\begin{equation*}
V\left(S_{t}, t ; K\right)=S_{t} N\left(d_{1}\right)-K e^{r(T-t)} N\left(d_{2}\right) \tag{3.3.2}
\end{equation*}
$$

where $d_{1}=(\sigma \sqrt{T-t})^{-1}\left(\log \left(S_{t} K^{-1}\right)+\left(r+\frac{\sigma^{2}}{2}(T-t)\right)\right.$ and $d_{2}=d_{1}-\sigma \sqrt{T-t}$

3.3.2 Class 3 Notebook 1

In this notebook, we keep other parameters the same and study the relationship between strike price K and the associated price of call option V. In particular, we select a number of strike prices, denoted $x_{1}, \ldots, x_{n} \in \mathbb{R}$ and generate the call option prices $y_{1}, \ldots, y_{n} \in \mathbb{R}$ in accordance with Equation 3.3.2. The dataset is hence $\left\{\left(x_{i}, y_{i}\right): i \in[n]\right\}$ and that we would like to approximate a function $f: \mathbb{R} \rightarrow \mathbb{R}$ as we generate our data $y_{i}=f\left(x_{i}\right) \quad \forall i$

3.3.3 Class 3 Notebook 2

In practice, one would be asked for the implied volatility σ given the data they receive - in this notebook, we fix 16 different strike prices and collect their corresponding call prices: for now, assume no noise. Then, for each $y_{i}=\sigma_{i} \in \mathbb{R}$, we have a 16 -dimensional data $x_{i} \in \mathbb{R}^{16}$, so the dataset is $\left\{\left(x_{i}, y_{i}\right): i \in[n]\right\}$ and that we would like to approximate a function $f: \mathbb{R}^{16} \rightarrow \mathbb{R}$ as we generate our data $y_{i}=f\left(x_{i}\right) \quad \forall i$

3.3.4 Class 3 Homework

Realistically, the data contains noise. In the Homework, we will work with noisy data, in particular, we consider the same function $f: \mathbb{R}^{16} \rightarrow \mathbb{R}$ as was in Notebook 2, but that we generate $\varepsilon_{i} \sim N\left(0_{16}, \sigma^{2} I_{16 \times 16}\right) \forall i \in[n]$, and observe $\tilde{x_{i}}=\max \left\{x_{i}+\varepsilon_{i}, 0\right\}$ instead of x_{i}. The maximum is in place because the practical world would not accept a negative prices on an option - so whilst there are noises, there is an obvious truncation.

So, we are still in the business of approximating f, but this time we have data $\left\{\left(\tilde{x}_{i}, y_{i}\right): i \in[n]\right\}$.

[^0]: *Latest version: https://parleyyang.github.io/ST456/index.html
 ${ }^{\dagger}$ Faculty of Mathematics, University of Cambridge

[^1]: ${ }^{1}$ In case of parallel computing, then memory scales with m, in case of sequential computing, the computational time scales with m.

