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Overview

@ The yield curve has a well-performing ability to forecast the
real GDP growth in the US, c.f. professional forecasters and
pure ARIMA models.

@ Results depend largely on the estimation and forecasting
techniques employed.

@ Statistical learning methods play a role in validating and
choosing which particular model to use.

@ Remark: this talk is leaning towards the statistical methods
instead of the current concerns on recession. For this reason
the motivation part contains a hands-on example which helps
to motivate and introduce the methodology.
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Motivation

@ Macro & Finance Literature:

8tt+k = @+ BS: + €

o Which k fits / forecasts better?
e How to define S;? — Variable selection

© Time Series Literature:
o Window-based estimation & forecasting
© Statistical Learning Literature:

e Bias-Variance trade-off in estimation
o Model selection
o Loss / learning function
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An example: asymptotic analysis

Consider a Data Generating Process (DGP) over time
{1,.., T2} ={1,...., i} U{T1 + 1,..., To}, with ergodic time series
Xt, ¥+ € R Vt with the following evolution:

vtV € {1,2} gj.t ~ iidN(0,1) (1a)
When1<t< T Yi = a1 + Bixe + o161t (1b)
When 1 +1<t< T» Vi = ao + Poxe + 02e2 ¢ (1c)

We concern about the forecast
Yi+1t = Elyer1lXe41, Yo, X, Ye—1, Xe—1, -]
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We write the pooled OLS estimation at time t as 3. When t < T1,
we have E[3;] = 1 and conveniently E[(y¢11 — Y¢11)¢)] = 0 and
E[(ye+1 — Yet1je)?] = 03. However, when t > T, we have

o)1 ZfTil(XT —X)? + B2 Z£:T1+1(XT - X)?

P = S0 7P

(2)

Thus

E[(ye+1 — yt+1|t)] = Elaz — d:] + E[B2 — Bt]xt+1 (3)

Now suppose T, — oo with the process description 1, then
E[B¢] — B2, assuming ergodicity. Thus E[(y+1 — Y¢11)¢)] — 0 and
E[(ye+1 — )/t+1|t)2] — 03.
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@ However, if we expand T, by admitting the change in the
frequency of switching between regimes, then we probably
would still have significant bias and larger-than-desired MSE.

o For example, let T — oo with theset {1,..., T} =AUB
where A contains some of the points and B contains the
remaining of the points. While in A we have the DGP evolving
equation 1b, and in B we have equation 1c as the evolution of
the datapoint, then 8; 2 aB; + (1 — a)f3, where 1Al | B oais

assumed to exist.
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Small window estimation:
e Transition Period TP(w) :={T1 +1,..., T1 + w}
e Stable Period SP(w) :=={T1 + w+1,..., To}
@ When t € TP(w), we get

ZZ;t—W(XT - ’_()2 + B2 Z:=T1+1(XT — X)

2

5, B
E[Be] = -
Ef’:tfw(XT - X)2

o When t € SP(w) we get E[3:] = fo.
Large window estimation:

@ TP(w) covers almost all time.

@ SP(w) covers little time.

(4)
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If we now expand T by admitting the change in the frequency of
switching as previously described, then (with regularity assumption
and n number of switches)

(") max(1de — k1B~ ) B 15—l (8)

While the pooled OLS can only achieve
(max (a,1—a)) " max(|Be — B1], |6 — Bal) B 181 — B2 (6)
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An example: simulation

Consider {xt,yt}thl to be drawn from the following distribution
and relationship:

x¢ ~ N(5,1) Yt
gj.e ~ N(0,1) V), t
Ye = a1+ Bixe + o011 when t € A
yi = ap + Box¢ + Gxtz + 02e when t € B
Ve = a3+ 0x¢ + 03€3,t when t € C

Here A, B, C are partition sets for {1,..., T}.
Consider the following specific parameters: T = 600,

a = (2,

_2’

~1), 8=(1,-1),0=3,6 =1, o = (10,20, 20).
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We consider five models:

ye =0+ Bxe +0e1t (pooled OLS) (8a)
ye =+ Bxe + 0e ¢ (w = 20) (8b)
ye =0+ Bxe + 0e3 ¢ (w = 50) (8¢)
Ve =+ Bx¢ + OxF + oy (w = 20) (8d)
Ve =+ Bxe + 0xF + oes ¢ (w = 50) (8e)

At every time t € {100, ..., T — 1}, we estimate the five models and
record their forecasts y;1;. MAE and MSE are then recorded after
the iterative process.
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Model selection over time

@ For each t > 100, repeat:
e Run the five models, collect the output of loss function for
each model.
o Pick the model which minimises the loss function at time t
and call such a forecast the forecast from the learning model
at time t.

Specification of the learning function
L({|r+1jr — Yr+1|}100<r<t-1):

L{xhoosr<e1) = D> ATTTI(x) (9)

100<7<t—1
where

(e—5)x—|—62%€2 if x > e
I(x) = lse(x) = { L2 ifo<x<e (10)
0 if x <46
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Figure: Model selection over time
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Results:

Model 8a 8b 8c 8d 8e
MAE 40.3 19.6 28.6 20.2 29.0
MSE | 2828.4 | 817.2 | 1662.0 | 848.7 | 1706.5

Model | A\ =0.9,0 =20,e =50 | A=0.7,6 = 5,¢ = 25

MAE 19.0 16.8

MSE 728.5 574.3
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Data

Time indexing: {1976Q3,...,2019Q1} = {1,..., T} with
T =171.
o Interest rate vector x; € R? contains:

o Effective Federal Funds Rate and 3-month US Interbank Rate.
o US Treasury yields of the following durations: 3, 12, 24, 36,
60, 84, and 120 months.

Growth rate of GDP defined as: k € {1, ..., 12},

B GDP; — GDP; y @
8tt+k = GDP, P

@ For a given k, an information set up to time t is
O = {x,]1 <7 < t}U{grr4kll <7 < t—k}
Dickey-Fuller Test (individually) checked for stationarity.

Comparing the results against SPF forecasts. (k up to 5)
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General setting

o Ultimate aim: &t ¢k = f(Py; 0r,1:)
o M={f(60,n)0 € ©,n € H} is then a collection of functions
that f can choose from.

o Model groups 1 to 6: H is a singleton and © = R”
e Model groups 7 to 9: H finite and © depends on the
specification of n € H

e Estimation (M; to Me): OLS to estimate the fit
gTﬂ'JFk: f(9)+€’r7 ETNiidN(O702)7 P§T§ t_k

Then take the estimated 0 as 6;.
N.B. p depends on the window method specification.

@ Assess the forecasts by MAE and MSE.
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Methodology (M; & M, )

@ Equation of interest for model groups 1 and 2:

f(®s; ar, Be) = ar + P St (11)

o M : expanding window size estimation & forecast for t > 61.
o M, : fixed window size estimation for
w € {20,28,...,124,132}, and forecast during
te{w+k+1,..,171 — k}.
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Result (M; & Ms,,)

K—1—2—3—4—5—6—7—8—39— 10— 11 — 12

20 28 36 44 52 60 68 76 84 92 100 108 116 124 132

Figure: MAE (top) and MSE (bottom) for different window sizes (w) and
lags (k) in the model group 2.
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k | MAE(M;) MAE(M>) MSE (M) MSE (M,)
minimum  mean minimum  mean
1 1.77 1.36 1.72 6.10 3.19 5.94
2 1.67 1.17 1.47 5.29 2.16 453
3 1.64 1.08 1.38 5.23 1.82 3.94
4 1.67 1.03 1.33 5.28 1.53 3.48
5 1.72 0.98 1.32 5.19 1.34 3.19
6 1.69 0.94 1.31 4.98 1.30 3.01
7 1.64 0.89 1.32 4.65 1.14 2.88
8 1.55 0.84 1.32 4.15 0.97 2.74
9 1.45 0.83 1.31 3.61 091 2.61
10 1.37 0.81 1.30 3.13 0.81 2.52
11 1.27 0.82 1.28 2.68 0.79 2.45
12 1.19 0.86 1.26 2.30 0.80 2.35

Table: MAE (columns 2 to 4) and MSE (columns 5 to 7) for different k
from model group 1 and 2. Columns 3 and 6 take the minimum over 15
window sizes and columns 4 and 7 take the mean over 15 window sizes in
model group 2.
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Methodology (M3 jw to Me.ijw)

@ Define vector short; as a vector of short term interest rates, in
particular, the Federal Funds Rate, 3-month Interbank Rate,
3-month, 12-month, and 24-month Treasury yields.

@ Define vector long, as a vector of long term interest rates
consisted of 120-, 84-, 60-, and 36-month Treasury yields.
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Models 3 to 6:
f(®Ps; ar, Bre, Por) = + /Bl,tlongt,j + B2, tshort; ;

ik
f(Pe; e, But, Bat, Pt) —atil_g;ft)

k—1
+ Z <ﬁ1,t¢lt|0"gt—/,j + 52,t¢ItSh0ftt7/,i>
1=0

+¢fgt—k,t
f(q)t; Q, Bl,tv B2,t) =o + /81 tlongtfl’j + 627t5h0rtt_1’;
_ ( — F)
f(q)t' A, 61 ty 62 ty ¢t)
— ¢t

k—1

+y (51,t¢lt|°ngt—/—1,j + /32,t¢45horttflfl,i>
1=0

+¢fgt—k,t
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Results (M3 j.w to Me.ijw)

Present min, ; i MAE(M, ;) for each k, w; likewise for MSE.

k—1—2-—3—4—56—6—7—8—9— 10— 1 —12

Figure: MAE (top) and MSE (bottom) for different window sizes and
different k for the best models in model groups 3 to 6.
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Comparison against model group 2.

k—1-—2—3—4—5—6 —7—8 —9 — 10— 11— 12

window
Figure: Proportional comparison of the MAE (top) and MSE (bottom)
obtained by models in groups 2 and 3-6, across different k and w. A
negative number means the model from groups 3-6 yields lower MAE or
MSE compared to group 2, and vice versa.
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Comparison against SPF.
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0.0-

20 28 36 44 52 60 68 76 84 92 100 108 116 124 132
window

Figure: Proportional comparison of the MAE (top) and MSE (bottom)
obtained by the best model in groups 3-6 and the SPF, across different k

and w.
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Methodology (M7 to M)

@ Two main questions:

e How to ensure we pick the "right" or "almost right" model so
that we achieve the minimum?

o Can we do better? Dynamically picking up models that do well
historically?

e For any given (k,w), at any time t > w + 2k + 1, there are 4
model groups available, each containing 20 models given by
(i,7). Now, for these total of 80 models which generate
forecasts, an assessment is made at time t. Call such
assessment L({grr+k — &rr+k}wrk+1<r<t—k) a loss function.
Optimisation is then done through minimising the loss
function, and thereafter forecast.
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Algorithm for the models. (Labelled as Algo 3.3 in the paper)

Algorithm 3.3: Model groups 7 to 9

1. For k € {1, ...,5}, w € {20,28, ..., 132}, repeat:
(a) For each t € {w+ 2k +1,...,171 — k}, repeat:
i. For each ¢ € {3,4,5,6}, i € {1,2,3,4,5}, j € {1,2,3,4}, repeat:
A. Over the period {w + k + 1,...,t — k}, run the required OLS estimation such that the
forecast based on the model M, ; j ., can be generated, then forecast.
B. Compute the output of loss function for each M, ; j .
ii. Pick the model, say M* which minimises the loss function.
iii. Use M* as the model to make forecast at time t, * and call such a forecast the forecast
from the learning model at time ¢.
(b) Collect the MAE and MSE for the overall forecasts from the learning model.

“Running the relevant OLS regression prior to the forecast of M* is also required.
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o Mz: A relatively naive way:

L({gT,T+k - gT,T+k}W+k+1STSt—k) = ‘gt—k,t - gt—k,t|

@ Mg: Full-history learning:

L() = Z I(|g7'77'+k - éT,T+k|)

w+k+1<7<t—k

@ My: Discounted-history learning:

L(..)= Z )‘t_k_T/(|gT,‘r+k — &r k)
wk+1<r<t—k

where A € (0, 1]
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The design of /(+):
e Vapnik (2000): j € {1,2}

I(x) = L(x) = 1[x > €](x — €}

o Huber (1964):

2
X — 5 if x >¢€
2

/(X) = /H,e(X) = {x if x <e

2
@ Another way (introduced in the motivation section):
(e—é)x—i—% if x > e

I(x) = Is.e(x) = ﬂ if 6 <x<e
0 if x <6
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Results (M)

@ M7 and Mg work badly, minor achievement can be seen
occasionally.

o Let Mg 1 (A, €) to be the model which employs /i . as the
specification of /.

o Let Mg (A€ 6) to be the model which employs /5 as the
specification of /.
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Overview

20 28 36 44 52 60 68 76 84 92 100 108 116 124 132 20 28 3 44 52 B0 68 76 84 92 100 108 116 124 132
window window

20 28 36 44 52 60 68 76 84 92 100 108 116 124 132

20 28 36 44 52 60 68 76 84 92 100 108 116 124 132
window

Left to right: Proportional comparison of the MAE (left) and MSE

(right) obtained by each model and the best model from groups

3-6, across different k and w.
Top to bottom: Mg 1(0.5,0.5) and Mg 1(0.9,0.5).
Note: three outliers in the top right plot are dropped.
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Left to right: Proportional comparison of the MAE (left) and MSE
(right) obtained by each model and the best model from groups
3-6, across different k and w.

Top to bottom: Mg »(0.75,2.5,0.5) and Mg »(0.7,2,0.7).
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Improvement counts

k 1 34 5
MAE 3 00 0
My,1(0.5,0.5) 0

MSE 3 10 3 0 1

1 1
My 1(0.9,0.5) MAE 00 0
MSE |1 1 0 0 o
k 1 2 3 4 5
My 5(0.75,2.5, 0.5) MAE |2 0 0 0 0
MSE 3 3 0 0 o

2
My 2(0.7,2,0.7) MAE || 0 0 0 0
MSE |3 9 5 1 9
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Figure: From top

03 04 05 06 o7 08 09 10 11 1z 13 14 15 16 17 18 19
Year

to bottom: g; 1o from different models and the actual

&t.t+2; the corresponding model that model 9 chooses over time; R? for
the estimations of different models at each time.
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Conclusion

© Which k7
o The larger the k, the less forecasting error it makes.
e Small k can well outperform SPF forecasts.
e Learning functions help to reduce "structural break" in the
betterment.
@ Estimation and forecasting methods:
e Variety in variable selection & window size methods bear fruit
to the improvement.
e Workhorse to the learning algorithms.

© Future:
e Engagement with macro & finance literature for variable
selection and functional forms.
e Wider data choices and longer time series.
e Asymptotics for learning function choices. (Harder ones than
the initial example).
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The only function of economic forecasting is to make astrology look
respectable.

— Professor Ezra Solomon (1985)
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